期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
机器学习法的干旱区典型农作物分类
被引量:
35
1
作者
黄双燕
杨辽
+1 位作者
陈曦
姚远
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2018年第10期3169-3176,共8页
当前,基于机器学习方法开展农作物分类研究,对于确保干旱区粮食安全和生态安全有着极为重要的现实意义。基于机器学习方法,采用时间序列Sentinel 2A遥感数据提取农作物分类信息,通过引入地块基元和红边特征,探讨了不同分类特征组合对机...
当前,基于机器学习方法开展农作物分类研究,对于确保干旱区粮食安全和生态安全有着极为重要的现实意义。基于机器学习方法,采用时间序列Sentinel 2A遥感数据提取农作物分类信息,通过引入地块基元和红边特征,探讨了不同分类特征组合对机器学习分类精度的影响。结果表明:随机森林分类器可以有效集成光谱和植被指数等多维向量的优势,将其应用于干旱区典型农作物分类上的精度均在89%以上,分类组总体精度最高可达94.02%。地块基元点集支持下的分类特征提取方法能够提高机器学习效率和农作物分类精度,使光谱组及指数组的分类精度分别提高3.13%和4.07%,并能有效解决"椒盐"效应及耕地边缘廓线模糊等问题。红边光谱和红边指数的引入分别使随机森林分类器总体精度提高2.39%和1.63%,并使春、冬小麦的识别能力显著提高,表明红边特征能够帮助分类器更敏感地捕捉不同作物特有的生长特性及物候差异。该研究结果可为机器学习方法及Sentinel 2A卫星在干旱区农业遥感的应用提供参考。
展开更多
关键词
机器学习
随机森林
农作物分类
地块基元
红边波段
下载PDF
职称材料
题名
机器学习法的干旱区典型农作物分类
被引量:
35
1
作者
黄双燕
杨辽
陈曦
姚远
机构
中国科学院新疆生态与地理研究所
中国科学院大学
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2018年第10期3169-3176,共8页
基金
国家自然科学基金项目(41361140361),国家重点研发计划(2017YFB0504204)和中国科学院“西部之光”人才培养引进计划青年学者A类项目(2016-QNXZ-A-5)资助。
文摘
当前,基于机器学习方法开展农作物分类研究,对于确保干旱区粮食安全和生态安全有着极为重要的现实意义。基于机器学习方法,采用时间序列Sentinel 2A遥感数据提取农作物分类信息,通过引入地块基元和红边特征,探讨了不同分类特征组合对机器学习分类精度的影响。结果表明:随机森林分类器可以有效集成光谱和植被指数等多维向量的优势,将其应用于干旱区典型农作物分类上的精度均在89%以上,分类组总体精度最高可达94.02%。地块基元点集支持下的分类特征提取方法能够提高机器学习效率和农作物分类精度,使光谱组及指数组的分类精度分别提高3.13%和4.07%,并能有效解决"椒盐"效应及耕地边缘廓线模糊等问题。红边光谱和红边指数的引入分别使随机森林分类器总体精度提高2.39%和1.63%,并使春、冬小麦的识别能力显著提高,表明红边特征能够帮助分类器更敏感地捕捉不同作物特有的生长特性及物候差异。该研究结果可为机器学习方法及Sentinel 2A卫星在干旱区农业遥感的应用提供参考。
关键词
机器学习
随机森林
农作物分类
地块基元
红边波段
Keywords
Machine learning
Random forest
Crop classification
Parcel data set
Red-edge
分类号
TP79 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
机器学习法的干旱区典型农作物分类
黄双燕
杨辽
陈曦
姚远
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2018
35
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部