In this work, semi-analytical methods were used to solve the problem of 1-D consolidation of non-homogeneous soft clay with spatially varying coefficients of permeability and compressibility. The semi-analytical solut...In this work, semi-analytical methods were used to solve the problem of 1-D consolidation of non-homogeneous soft clay with spatially varying coefficients of permeability and compressibility. The semi-analytical solution was programmed and then verified by comparison with the obtained analytical solution of a special case. Based on the results of some computations and comparisons with the 1-D homogeneous consolidation (by Terzaghi) and the 1-D non-linear consolidation theory (by Davis et al.) of soft clay, some diagrams were prepared and the relevant consolidation behavior of non-homogeneous soils is discussed. It was shown that the result obtained differs greatly from Terzaghi’s theory and that of the non-linear consolidation theory when the coefficients of permeability and compressibility vary greatly.展开更多
This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equall...This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equally into n layers while load and consolidation time are also divided into small parts and time intervals accordingly. The problem of one-dimensional consolidation of soil stratum under cyclic loading can then be dealt with at each time interval as one-dimensional linear consolidation of multi-layered soils under constant loading. The compression or rebounding of each soil layer can be judged by the effective stress of the layer. When the effective stress is larger than that in the last time interval, the soil layer is compressed, and when it is smaller, the soil layer rebounds. Thus, appropriate compressibility can be chosen and the consolidation of the layered system can be analyzed by the available analytical linear consolidation theory. Based on the semi-analytical method, a computer program was developed and the behavior of one-dimensional consolidation of soil with varied compressibility under cyclic loading was investigated, and compared with the available consolidation theory which takes no consideration of varied compressibility of soil under cyclic loading. The results showed that by taking the variable compressibility into account, the rate of consolidation of soil was greater than the one predicted by conventional consolidation theory.展开更多
基金Project (No. 20030335027) supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘In this work, semi-analytical methods were used to solve the problem of 1-D consolidation of non-homogeneous soft clay with spatially varying coefficients of permeability and compressibility. The semi-analytical solution was programmed and then verified by comparison with the obtained analytical solution of a special case. Based on the results of some computations and comparisons with the 1-D homogeneous consolidation (by Terzaghi) and the 1-D non-linear consolidation theory (by Davis et al.) of soft clay, some diagrams were prepared and the relevant consolidation behavior of non-homogeneous soils is discussed. It was shown that the result obtained differs greatly from Terzaghi’s theory and that of the non-linear consolidation theory when the coefficients of permeability and compressibility vary greatly.
文摘This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equally into n layers while load and consolidation time are also divided into small parts and time intervals accordingly. The problem of one-dimensional consolidation of soil stratum under cyclic loading can then be dealt with at each time interval as one-dimensional linear consolidation of multi-layered soils under constant loading. The compression or rebounding of each soil layer can be judged by the effective stress of the layer. When the effective stress is larger than that in the last time interval, the soil layer is compressed, and when it is smaller, the soil layer rebounds. Thus, appropriate compressibility can be chosen and the consolidation of the layered system can be analyzed by the available analytical linear consolidation theory. Based on the semi-analytical method, a computer program was developed and the behavior of one-dimensional consolidation of soil with varied compressibility under cyclic loading was investigated, and compared with the available consolidation theory which takes no consideration of varied compressibility of soil under cyclic loading. The results showed that by taking the variable compressibility into account, the rate of consolidation of soil was greater than the one predicted by conventional consolidation theory.