To keep the tunnel face stable is very important for tunnel construction.In this paper,the tunnel face stability under the advanced pipe was analyzed using the Winkler foundation model and rigid limit equilibrium.The ...To keep the tunnel face stable is very important for tunnel construction.In this paper,the tunnel face stability under the advanced pipe was analyzed using the Winkler foundation model and rigid limit equilibrium.The tunnel face deformation characteristics were also analyzed using the numerical simulation.The influence of parameters on the deflection of the pipe roof and the stability of the tunnel face were discussed.The results show that the tunnel face stability can be improved through increasing the pipe diameter,decreasing the initial displacement at the beginning of the pipe seat,and adopting the short round length and small excavation height.With the increase of tunnel burial depth,the safety factor of tunnel face stability first decreases,then increases,and then remains unchanged.The deformation at the center of the tunnel face is larger than the deformation at the surround sides and at the corner.The horizontal displacement varies little with the increasing of the pipe length.The horizontal displacement at the center of the tunnel face increases with the increase of the pipe ring spacing and the pipe longitudinal spacing.There is an optimum external angle.展开更多
Gas emissions of workfaces in steeply inclined and extremely thick coal seams differ from those under normal geological conditions, which usually feature a high gas concentration and a large emission quantity. This st...Gas emissions of workfaces in steeply inclined and extremely thick coal seams differ from those under normal geological conditions, which usually feature a high gas concentration and a large emission quantity. This study took the Wudong coal mine in Xinjiang province of China as a typical case. The gas occurrence of the coal seam and the pressure-relief range of the surrounding rock(coal) were studied by experiments and numerical simulations. Then, a new method to calculate the gas emission quantity for this special geological condition was provided. Based on the calculated quantity, a further gas drainage plan, as well as the evaluation of it with field drainage data, was finally given. The results are important for engineers to reasonably plan the gas drainage boreholes of steeply inclined and extremely thick coal seams.展开更多
Taking the effect of finite soil layers below pile end into account,the longitudinal dynamic response of pile undergoing dynamic loading in layered soil was theoretically investigated.Firstly,finite soil layers below ...Taking the effect of finite soil layers below pile end into account,the longitudinal dynamic response of pile undergoing dynamic loading in layered soil was theoretically investigated.Firstly,finite soil layers below pile end are modeled as virtual soil pile whose cross-section area is the same as that of the pile and the soil layers surrounding the pile are described by the plane strain model.Then,by virtue of Laplace transform and impedance function transfer method,the analytical solution of longitudinal dynamic response at the pile head in frequency domain is yielded.Also,the semi-analytical solution in time domain undergoing half-cycle sine pulse at the pile head is obtained by means of inverse Laplace transform.Based on these solutions,a parametric study is conducted to analyze emphatically the effects of parameters of soil below pile end on velocity admittance and reflected wave signals at the pile head.Additionally,a comparison with other models with different supporting conditions from soil below pile end is performed to verify the model presented.展开更多
The development of offshore wind energy is fast as it is clean, safe and of high efficiency. The harsh marine environment raises high demand on the foundation design of offshore wind turbine. Earthquake loading is one...The development of offshore wind energy is fast as it is clean, safe and of high efficiency. The harsh marine environment raises high demand on the foundation design of offshore wind turbine. Earthquake loading is one of the most significant factors which should be considered in the design phase. In this paper, a group of earthquake centrifuge tests were conducted on a physical wind turbine model with tripod foundation. The seismic responses of both wind turbine model and foundation soil were analyzed in terms of the recorded accelerations, pore water pressures, lateral displacements and settlements. The results were also compared with those measured in the previous research on mono-pile foundation. It is demonstrated that the tripod foundation can provide better resistance in the lateral displacement and structural settlement under earthquake loading.展开更多
The kinetics of complex reaction systems were studied on molecular level with the combined method of Monte Carlo simulation and Structural Oriented Lumping by focusing on deep catalytic cracking (DCC) process, the m...The kinetics of complex reaction systems were studied on molecular level with the combined method of Monte Carlo simulation and Structural Oriented Lumping by focusing on deep catalytic cracking (DCC) process, the model parameters were optimized by means of routine analytic data of a DCC unit. A model was established to transform the feedstock of the complex reaction systems such as DCC to 1000-10000 pseudo-molecules with the Monte Carlo simulation and every molecule was expressed by 19 attributes. The results of model simulation showed that these pseudo-molecules reflected the characteristics of feedstock very well and their average properties gave a good agreement with the plant data.展开更多
A West Kentucky mine operation in No. 11 seam encountered floor heave, due to the localized increase in the thickness of the fireclay mine floor. Floor heave has overridden seals installed in two mined out panels. The...A West Kentucky mine operation in No. 11 seam encountered floor heave, due to the localized increase in the thickness of the fireclay mine floor. Floor heave has overridden seals installed in two mined out panels. The third seal's location was planned for isolating that area from the Mains. A plan of support has been developed to prevent repetition of the floor heave and related problems outby the seals. The applied ground control measures were successful. An attempt of a 3D numerical modeling was made; thus, it would match the observed behavior of the mine floor and could be used as a design tool in similar conditions. The paper describes sequence of events, an applied mitigation ground control system, and the first stage of numerical modeling.展开更多
To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and...To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and the comparisons with the current methods to determine the load on a culvert were completed. The results of the model test and numerical analysis are in satisfactory agreement, which shows that the direction of the shear stress between the culvert and the adjacent embankment depends on the differential settlement between them. A vertical earth pressure concentration appears on the culvert with a rigid piles foundation because of a downward shear stress. The ratio of the load on a soft foundation culvert and the overburden pressure above the culvert raises first and then decreases as the backfill height increases. In order to reduce the load on a culvert, it is suggested to limit the stiffness difference of the foundations under the culvert and embankment and to use a light backfill over the culvert.展开更多
The seismic behavior of the bedrock foundation during earthquakes concerns the stability and safety of nuclear power plants. Discontinuities like joints and faults existing in rock masses affect significantly the dyna...The seismic behavior of the bedrock foundation during earthquakes concerns the stability and safety of nuclear power plants. Discontinuities like joints and faults existing in rock masses affect significantly the dynamic behavior of bedrock. The dynamic FEM (finite element method) has been commonly utilized to analyze the seismic responses of bedrock, however, it cannot well represent the large deformation behavior of discontinuities. The DEM (distinct element method) has a better capability of simulating the sliding and separation of discontinuities existing in the bedrock, which influence the propagation of seismic waves. In this study, the dynamic FEM and DEM simulations were carried out to investigate the seismic behavior of the bedrock foundation under a nuclear power plant, and the differences between those two methods were illuminated. Numerical simulation results indicate that the FEM underestimates the attenuation effect of faults on the propagation of seismic waves. With the capability of simulating large deformation behavior of discontinuities, the DEM can be regarded as a better method for studying the seismic responses of bedrock foundation which contains discontinuities.展开更多
A new construction method of pile foundation in composite ground, in which, prior to installing piles, the ground is improved around the heads of the piles in soft ground or ground subject to liquefaction, which is in...A new construction method of pile foundation in composite ground, in which, prior to installing piles, the ground is improved around the heads of the piles in soft ground or ground subject to liquefaction, which is introduced in this paper. This construction method uses a combination of pile foundation construction together with common ground improvement methods, including deep mixing, preloading and sand compaction piling, and it is referred to as the composite ground pile method. Since an artificial ground with relatively high rigidity comparing with that of the original ground was formed around the pile in this method, and the seismic performance has not been made clear, thus the seismic performance of piles in composite ground was systematically analyzed through a series of centrifuge model tests and numerical analyses by using dynamic nonlinear finite element method, and a verification method for the seismic performance of piles in composite ground was proposed on the basis of the experimental and numerical results.展开更多
基金Project(20A187)supported by the Hunan Provincial Department of Education,ChinaProjects(51408216,51308209)supported by the National Natural Science Foundation of China。
文摘To keep the tunnel face stable is very important for tunnel construction.In this paper,the tunnel face stability under the advanced pipe was analyzed using the Winkler foundation model and rigid limit equilibrium.The tunnel face deformation characteristics were also analyzed using the numerical simulation.The influence of parameters on the deflection of the pipe roof and the stability of the tunnel face were discussed.The results show that the tunnel face stability can be improved through increasing the pipe diameter,decreasing the initial displacement at the beginning of the pipe seat,and adopting the short round length and small excavation height.With the increase of tunnel burial depth,the safety factor of tunnel face stability first decreases,then increases,and then remains unchanged.The deformation at the center of the tunnel face is larger than the deformation at the surround sides and at the corner.The horizontal displacement varies little with the increasing of the pipe length.The horizontal displacement at the center of the tunnel face increases with the increase of the pipe ring spacing and the pipe longitudinal spacing.There is an optimum external angle.
基金provided by the National Science and Technology Major Project (No. 2016ZX05043-005)
文摘Gas emissions of workfaces in steeply inclined and extremely thick coal seams differ from those under normal geological conditions, which usually feature a high gas concentration and a large emission quantity. This study took the Wudong coal mine in Xinjiang province of China as a typical case. The gas occurrence of the coal seam and the pressure-relief range of the surrounding rock(coal) were studied by experiments and numerical simulations. Then, a new method to calculate the gas emission quantity for this special geological condition was provided. Based on the calculated quantity, a further gas drainage plan, as well as the evaluation of it with field drainage data, was finally given. The results are important for engineers to reasonably plan the gas drainage boreholes of steeply inclined and extremely thick coal seams.
基金Project(50879077) supported by the National Natural Science Foundation of China
文摘Taking the effect of finite soil layers below pile end into account,the longitudinal dynamic response of pile undergoing dynamic loading in layered soil was theoretically investigated.Firstly,finite soil layers below pile end are modeled as virtual soil pile whose cross-section area is the same as that of the pile and the soil layers surrounding the pile are described by the plane strain model.Then,by virtue of Laplace transform and impedance function transfer method,the analytical solution of longitudinal dynamic response at the pile head in frequency domain is yielded.Also,the semi-analytical solution in time domain undergoing half-cycle sine pulse at the pile head is obtained by means of inverse Laplace transform.Based on these solutions,a parametric study is conducted to analyze emphatically the effects of parameters of soil below pile end on velocity admittance and reflected wave signals at the pile head.Additionally,a comparison with other models with different supporting conditions from soil below pile end is performed to verify the model presented.
文摘The development of offshore wind energy is fast as it is clean, safe and of high efficiency. The harsh marine environment raises high demand on the foundation design of offshore wind turbine. Earthquake loading is one of the most significant factors which should be considered in the design phase. In this paper, a group of earthquake centrifuge tests were conducted on a physical wind turbine model with tripod foundation. The seismic responses of both wind turbine model and foundation soil were analyzed in terms of the recorded accelerations, pore water pressures, lateral displacements and settlements. The results were also compared with those measured in the previous research on mono-pile foundation. It is demonstrated that the tripod foundation can provide better resistance in the lateral displacement and structural settlement under earthquake loading.
基金supported by the National Natural Science Foundation of China(ID No. 20476030)
文摘The kinetics of complex reaction systems were studied on molecular level with the combined method of Monte Carlo simulation and Structural Oriented Lumping by focusing on deep catalytic cracking (DCC) process, the model parameters were optimized by means of routine analytic data of a DCC unit. A model was established to transform the feedstock of the complex reaction systems such as DCC to 1000-10000 pseudo-molecules with the Monte Carlo simulation and every molecule was expressed by 19 attributes. The results of model simulation showed that these pseudo-molecules reflected the characteristics of feedstock very well and their average properties gave a good agreement with the plant data.
文摘A West Kentucky mine operation in No. 11 seam encountered floor heave, due to the localized increase in the thickness of the fireclay mine floor. Floor heave has overridden seals installed in two mined out panels. The third seal's location was planned for isolating that area from the Mains. A plan of support has been developed to prevent repetition of the floor heave and related problems outby the seals. The applied ground control measures were successful. An attempt of a 3D numerical modeling was made; thus, it would match the observed behavior of the mine floor and could be used as a design tool in similar conditions. The paper describes sequence of events, an applied mitigation ground control system, and the first stage of numerical modeling.
基金Project(2012AA112504) supported by the National High Technology Research and Development Program of ChinaProjects(51108048,51478054) supported by the National Natural Science Foundation of China
文摘To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and the comparisons with the current methods to determine the load on a culvert were completed. The results of the model test and numerical analysis are in satisfactory agreement, which shows that the direction of the shear stress between the culvert and the adjacent embankment depends on the differential settlement between them. A vertical earth pressure concentration appears on the culvert with a rigid piles foundation because of a downward shear stress. The ratio of the load on a soft foundation culvert and the overburden pressure above the culvert raises first and then decreases as the backfill height increases. In order to reduce the load on a culvert, it is suggested to limit the stiffness difference of the foundations under the culvert and embankment and to use a light backfill over the culvert.
文摘The seismic behavior of the bedrock foundation during earthquakes concerns the stability and safety of nuclear power plants. Discontinuities like joints and faults existing in rock masses affect significantly the dynamic behavior of bedrock. The dynamic FEM (finite element method) has been commonly utilized to analyze the seismic responses of bedrock, however, it cannot well represent the large deformation behavior of discontinuities. The DEM (distinct element method) has a better capability of simulating the sliding and separation of discontinuities existing in the bedrock, which influence the propagation of seismic waves. In this study, the dynamic FEM and DEM simulations were carried out to investigate the seismic behavior of the bedrock foundation under a nuclear power plant, and the differences between those two methods were illuminated. Numerical simulation results indicate that the FEM underestimates the attenuation effect of faults on the propagation of seismic waves. With the capability of simulating large deformation behavior of discontinuities, the DEM can be regarded as a better method for studying the seismic responses of bedrock foundation which contains discontinuities.
文摘A new construction method of pile foundation in composite ground, in which, prior to installing piles, the ground is improved around the heads of the piles in soft ground or ground subject to liquefaction, which is introduced in this paper. This construction method uses a combination of pile foundation construction together with common ground improvement methods, including deep mixing, preloading and sand compaction piling, and it is referred to as the composite ground pile method. Since an artificial ground with relatively high rigidity comparing with that of the original ground was formed around the pile in this method, and the seismic performance has not been made clear, thus the seismic performance of piles in composite ground was systematically analyzed through a series of centrifuge model tests and numerical analyses by using dynamic nonlinear finite element method, and a verification method for the seismic performance of piles in composite ground was proposed on the basis of the experimental and numerical results.