期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
2008-2012年拉萨地基与卫星臭氧总量观测比较 被引量:2
1
作者 陈涛 张勇 +2 位作者 卓嘎 拉巴 余佥贤 《冰川冻土》 CSCD 北大核心 2015年第2期395-400,共6页
通过比较2008-2012年拉萨站地基观测臭氧总量与三种卫星反演产品,评估地基和卫星观测臭氧总量数据的质量信息.结果表明:地基与卫星臭氧总量绝对差为-10-15 DU,相对差为-4%-4%,日尺度相对差呈随机分布特征;TOSOM I算法反演的SCIAM ACHY... 通过比较2008-2012年拉萨站地基观测臭氧总量与三种卫星反演产品,评估地基和卫星观测臭氧总量数据的质量信息.结果表明:地基与卫星臭氧总量绝对差为-10-15 DU,相对差为-4%-4%,日尺度相对差呈随机分布特征;TOSOM I算法反演的SCIAM ACHY臭氧总量更接近地基观测结果,DOAS算法反演OMI臭氧总量与地基观测结果差异最大.地基与卫星臭氧总量标准差存在季节性变化,夏季最大,冬季最小;云的影响会加剧地基与卫星臭氧总量差异,以SCIAMACHY产品最为显著. 展开更多
关键词 拉萨 臭氧总量 地基-卫星观测
下载PDF
中国4个地点地基与卫星臭氧总量长期观测比较 被引量:18
2
作者 郑向东 韦小丽 《应用气象学报》 CSCD 北大核心 2010年第1期1-10,共10页
对我国河北香河、云南昆明、青海瓦里关及黑龙江龙凤山地基观测臭氧总量与不同时期、不同卫星反演的产品差别特点进行比较,评估地基和卫星观测臭氧总量数据的质量信息以及近30年来我国不同区域臭氧总量的变化趋势特征。结果表明:4个... 对我国河北香河、云南昆明、青海瓦里关及黑龙江龙凤山地基观测臭氧总量与不同时期、不同卫星反演的产品差别特点进行比较,评估地基和卫星观测臭氧总量数据的质量信息以及近30年来我国不同区域臭氧总量的变化趋势特征。结果表明:4个站点的地基与卫星观测臭氧总量的绝对和相对差别分别为-5~10DU和-5%~4%;日平均相对差别基本上呈现随机分布特征。TOMS算法反演的卫星臭氧总量与地基差别总体上要优于与DOAS算法反演的同期产品。地基与卫星臭氧总量差别呈明显的区域特点,可能反映了卫星反演计算中所需的臭氧、温度垂直分布等初始条件的纬度分布差异对卫星产品精度的影响。在过去30年,4个站点的臭氧总量在经历1993年前的显著降低后于1995-1996年逐渐回升,而瓦里关站在2001年前后的回升更为明显。 展开更多
关键词 臭氧总量 地基-卫星观测 差别比较
下载PDF
Contribution of Ground-Based Cloud Observation to Satellite-Based Cloud Discrimination
3
作者 Mitsunori Yoshimura Megumi Yamashita 《Journal of Environmental Science and Engineering(A)》 2013年第8期487-493,共7页
One of the biggest factors to deteriorate the satellite product quality is cloud coverage. Therefore, cloud masking process is important to improve the quality of various satellite products. However, satellite-based c... One of the biggest factors to deteriorate the satellite product quality is cloud coverage. Therefore, cloud masking process is important to improve the quality of various satellite products. However, satellite-based cloud discrimination algorithm has been developing and efficient ground-based cloud observations are necessary to validate satellite-based cloud discrimination. The purpose of this study is to develop the efficient ground-based cloud observation methodology using whole sky camera. This paper deals with methods how to discriminate cloud portions on whole sky image, how to apply the ground-based cloud observation to the validations for satellite products. For the cloud discrimination on whole sky image, we propose SI (sky index) and BI (brightness index) calculated from RGB (red, green and blue) channels. SI shows the extent of the blueness and gray scale and BI indicates the extent of the brightness. Sun, cloud and blue sky portions are divided by SI and BI threshold. As an application of ground-based cloud observation for the validation of satellite products, clouds portions discriminated from whole sky image are projected onto ground surface with map coordinate. We also examine to compare with cloud portions on whole sky images and MODIS (MODerate resolution Imaging Spectroradiometer) image as one of experiments. The proposed ground-based cloud observation method and its extension to satellite-based cloud discrimination should be connected to improve the quality of satellite products. 展开更多
关键词 Cloud discrimination whole sky camera S1 (sky index) BI (brightness index).
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部