期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
船舶地声信号相干分析方法 被引量:1
1
作者 李响 李荣 颜冰 《船舶力学》 EI CSCD 北大核心 2013年第1期182-186,共5页
低频声波与海底交互耦合使海底成为有效的地声传播路径,利用船舶地声信号可以实现目标的探测定位。传统傅氏变换因时间序列平稳性假定的局限性已不适合于非平稳地声信号的分析,小波变换将时间序列扩展至时频空间,使小波变换具有良好的... 低频声波与海底交互耦合使海底成为有效的地声传播路径,利用船舶地声信号可以实现目标的探测定位。传统傅氏变换因时间序列平稳性假定的局限性已不适合于非平稳地声信号的分析,小波变换将时间序列扩展至时频空间,使小波变换具有良好的局域性和逼近性。借鉴傅氏变换的形式,定义小波谱和小波相干系数并对船舶地声信号进行分析,在时频域直观地展现了信号间的关系。数据分析表明:水声信号和地声信号在2.5-50Hz频带内是相干的,是同一声源发出的不同路径传播的相干信号,相应的SCR(信号耦合比)值随频率增加先减少后略微增加,同时体现出小波谱和小波相干系数是一种有效的分析信号相干性的方法。 展开更多
关键词 船舶地声信号 信号耦合比 小波谱 小波相干系数
下载PDF
基于EEMD的地声信号单通道盲源分离算法 被引量:23
2
作者 刘佳 杨士莪 朴胜春 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2011年第2期194-199,共6页
针对只有一个观测通道时,基于矩阵运算的盲源分离算法将会失效的问题,提出一种适用于单观测通道的地声信号盲源分离方法.首先采用总体经验模态分解方法将观测信号分解为固有模态矩阵,使单通道的欠定问题转化为多通道的正定问题,再利用... 针对只有一个观测通道时,基于矩阵运算的盲源分离算法将会失效的问题,提出一种适用于单观测通道的地声信号盲源分离方法.首先采用总体经验模态分解方法将观测信号分解为固有模态矩阵,使单通道的欠定问题转化为多通道的正定问题,再利用已有的盲源分离算法进行分离.仿真实验说明该方法可以抑制宽频及瞬态干扰,有效地提取源信号,而且对频带有交叠的信号也有一定的分离效果.实验数据处理显示该方法可以在地声环境噪声干扰下,有效地提高目标信号的信噪比,增加检测性能,证明了该方法在地声信号处理中的有效性. 展开更多
关键词 盲源分离 单通道 总体经验模态分解 地声信号处理
下载PDF
地声信号的Wigner谱及其意义 被引量:1
3
作者 简文彬 陈葆仁 《福州大学学报(自然科学版)》 CAS CSCD 1997年第3期80-85,共6页
地声是一种具有非稳态特征的地球物理信号,分析其谱特征时须有别于稳态信号.本文以位于郯庐断裂带中段上的深井中所捕捉到的地声信号为例,用Wigner分布对地声信号作时-频谱分析.结果表明,地声信号的能量主要分布在100.... 地声是一种具有非稳态特征的地球物理信号,分析其谱特征时须有别于稳态信号.本文以位于郯庐断裂带中段上的深井中所捕捉到的地声信号为例,用Wigner分布对地声信号作时-频谱分析.结果表明,地声信号的能量主要分布在100.00~170.00Hz范围;临近破裂时,频率以高频为主,谱峰数增加;至破裂时频率降低,以低频为主,之后又以高频成份占优势.地声信号的谱特征与断裂所处的构造应力状态、断裂面岩性。 展开更多
关键词 地球物理信号 地震预报 地声信号 Wigner谱
原文传递
地震地声监测系统的设计 被引量:1
4
作者 王轩力 孙立新 《山西电子技术》 2020年第4期47-49,共3页
本文简要介绍了地震与地声,在此基础上设计了低功耗的、分布式的、可移动的地声监测系统。本文主要完成了地声监测系统的设计、地声传感器的选型,并且设计和制作了低价位、低功耗的以MSP430单片机为核心的地声信号采集仪,同时完成了地... 本文简要介绍了地震与地声,在此基础上设计了低功耗的、分布式的、可移动的地声监测系统。本文主要完成了地声监测系统的设计、地声传感器的选型,并且设计和制作了低价位、低功耗的以MSP430单片机为核心的地声信号采集仪,同时完成了地声信号采集仪软件、上位机通信软件的编程。最后对各部分电路进行实验和调试,并对整个监测系统进行了数据采集和数据传输实验。通过实验证明该监测系统能够达到预期目标和实现预期功能。 展开更多
关键词 地声 地声采集系统 地声信号采集仪
下载PDF
地声监测及识别
5
作者 黄喜斌 陆世康 《宇航计测技术》 CSCD 北大核心 1991年第5期69-75,共7页
遥远战场地声信号监测识别系统是国外正在兴起的一种无人自动侦察系统。本文通过对大地传输特性的分析,得出了轮式车辆、履带式车辆和人运动时地声信号的特征。基于此特性,设计出目标分类的特征提取方法,选择了合适的信号处理方法和识... 遥远战场地声信号监测识别系统是国外正在兴起的一种无人自动侦察系统。本文通过对大地传输特性的分析,得出了轮式车辆、履带式车辆和人运动时地声信号的特征。基于此特性,设计出目标分类的特征提取方法,选择了合适的信号处理方法和识别算法。研制了以主从式计算机系统为核心的交互式高速地声信号处理系统;以优化设计思想设计了特征提取算法和识别算法。最后以实验数据为基础提取出特征提取算法和识别算法中的一些参数,并对信号处理系统、特征提取算法和识别算法进行了检验,得到了很好的识别准确度,这表明该系统和各种算法的设计思想是正确可行的。 展开更多
关键词 测向 测距 地声信号 监测
下载PDF
Seismic noise attenuation using nonstationary polynomial fitting 被引量:12
6
作者 Liu Guo-Chang Chen Xiao-Hong +2 位作者 Li Jing-Ye Du Jing Song Jia-Wen 《Applied Geophysics》 SCIE CSCD 2011年第1期18-26,94,共10页
We propose a novel method for seismic noise attenuation by applying nonstationary polynomial fitting (NPF), which can estimate coherent components with amplitude variation along the event. The NPF with time-varying ... We propose a novel method for seismic noise attenuation by applying nonstationary polynomial fitting (NPF), which can estimate coherent components with amplitude variation along the event. The NPF with time-varying coefficients can adaptively estimate the coherent components. The smoothness of the polynomial coefficients is controlled by shaping regularization. The signal is coherent along the offset axis in a common midpoint (CMP) gather after normal moveout (NMO). We use NPF to estimate the effective signal and thereby to attenuate the random noise. For radial events-like noise such as ground roll, we first employ a radial trace (RT) transform to transform the data to the time-velocity domain. Then the NPF is used to estimate coherent noise in the RT domain. Finally, the coherent noise is adaptively subtracted from the noisy dataset. The proposed method can effectively estimate coherent noise with amplitude variations along the event and there is no need to propose that noise amplitude is constant. Results of synthetic and field data examples show that, compared with conventional methods such as stationary polynomial fitting and low cut filters, the proposed method can effectively suppress seismic noise and preserve the signals. 展开更多
关键词 Polynomial fitting noise attenuation radial trace transform nonstationary regression
下载PDF
Research on weak signal extraction and noise removal for GPR data based on principal component analysis 被引量:1
7
作者 CHEN Lingna ZENG Zhaofa +1 位作者 LI Jing YUAN Yuan 《Global Geology》 2015年第3期196-202,共7页
The ground penetrating radar (GPR) detection data is a wide band signal, always disturbed by some noise, such as ambient random noise and muhiple refleetion waves. The noise affects the target identification of unde... The ground penetrating radar (GPR) detection data is a wide band signal, always disturbed by some noise, such as ambient random noise and muhiple refleetion waves. The noise affects the target identification of underground medium seriously. A method based on principal component analysis (PCA) was proposed to ex- tract the target signal and remove the uncorrelated noise. According to the correlation of signal, the authors get the eigenvalues and corresponding eigenvectors by decomposing the covariance matrix of GPR data and make linear transformation for the GPR data to get the principal components (PCs). The lower-order PCs stand h^r the strong correlated target signals of the raw data, and the higher-order ones present the uneorrelated noise. Thus the authors can extract the target signal and filter uncorrelated noise effectively by the PCA. This method was demonstrated on real ultra-wideband through-wall radar data and simulated GPR data. Both of the results show that the PCA method can effectively extract the GPR target signal and remove the uncorrelated noise. 展开更多
关键词 ground penetrating radar principal component analysis target extraction noise removing
下载PDF
Acoustic location echo signal extraction of buried non-metallic pipelines based on EMD and wavelet threshold joint denoising
8
作者 GE Liang YUAN Xuefeng +2 位作者 XIAO Xiaoting LUO Ping WANG Tian 《Journal of Measurement Science and Instrumentation》 CAS 2024年第4期417-431,共15页
In the acoustic detection process of buried non-metallic pipelines,the echo signal is often interfered by a large amount of noise,which makes it extremely difficult to effectively extract useful signals.An denoising a... In the acoustic detection process of buried non-metallic pipelines,the echo signal is often interfered by a large amount of noise,which makes it extremely difficult to effectively extract useful signals.An denoising algorithm based on empirical mode decomposition(EMD)and wavelet thresholding was proposed.This method fully considered the nonlinear and non-stationary characteristics of the echo signal,making the denoising effect more significant.Its feasibility and effectiveness were verified through numerical simulation.When the input SNR(SNRin)is between-10 dB and 10 dB,the output SNR(SNRout)of the combined denoising algorithm increases by 12.0%-34.1%compared to the wavelet thresholding method and by 19.60%-56.8%compared to the EMD denoising method.Additionally,the RMSE of the combined denoising algorithm decreases by 18.1%-48.0%compared to the wavelet thresholding method and by 22.1%-48.8%compared to the EMD denoising method.These results indicated that this joint denoising algorithm could not only effectively reduce noise interference,but also significantly improve the positioning accuracy of acoustic detection.The research results could provide technical support for denoising the echo signals of buried non-metallic pipelines,which was conducive to improving the acoustic detection and positioning accuracy of underground non-metallic pipelines. 展开更多
关键词 buried non-metallic pipeline acoustic positioning signal processing optimal decomposition scale wavelet basis function EMD combined wavelet threshold algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部