By substituting rock skeleton modulus expressions into Gassmann approximate fluid equation, we obtain a seismic porosity inversion equation. However, conventional rock skeleton models and their expressions are quite d...By substituting rock skeleton modulus expressions into Gassmann approximate fluid equation, we obtain a seismic porosity inversion equation. However, conventional rock skeleton models and their expressions are quite different from each other, resuling in different seismic porosity inversion equations, potentially leading to difficulties in correctly applying them and evaluating their results. In response to this, a uniform relation with two adjusting parameters suitable for all rock skeleton models is established from an analysis and comparison of various conventional rock skeleton models and their expressions including the Eshelby-Walsh, Pride, Geertsma, Nur, Keys-Xu, and Krief models. By giving the two adjusting parameters specific values, different rock skeleton models with specific physical characteristics can be generated. This allows us to select the most appropriate rock skeleton model based on geological and geophysical conditions, and to develop more wise seismic porosity inversion. As an example of using this method for hydrocarbon prediction and fluid identification, we apply this improved porosity inversion, associated with rock physical data and well log data, to the ZJ basin. Research shows that the existence of an abundant hydrocarbon reservoir is dependent on a moderate porosity range, which means we can use the results of seismic porosity inversion to identify oil reservoirs and dry or water-saturated reservoirs. The seismic inversion results are closely correspond to well log porosity curves in the ZJ area, indicating that the uniform relations and inversion methods proposed in this paper are reliable and effective.展开更多
Rock-physics models are constructed for hydrate-bearing sediments in the Qilian Mountains permafrost region using the K–T equation model, and modes I and II of the effective medium model. The K–T equation models the...Rock-physics models are constructed for hydrate-bearing sediments in the Qilian Mountains permafrost region using the K–T equation model, and modes I and II of the effective medium model. The K–T equation models the seismic wave propagation in a two-phase medium to determine the elastic moduli of the composite medium. In the effective medium model, mode I, the hydrate is a component of the pore inclusions in mode I and in mode II it is a component of the matrix. First, the P-wave velocity, S-wave velocity, density, bulk modulus, and shear modulus of the sediment matrix are extracted from logging data.. Second, based on the physical properties of the main components of the sediments, rock-physics model is established using the K–T equation, and two additional rock-physics models are established assuming different hydrate-filling modes for the effective medium. The model and actual velocity data for the hydrate-bearing sediments are compared and it is found that the rock-physics model for the hydrate-filling mode II well reproduces the actual data.展开更多
To minimize negative effects of geostress distribution on mining safety near the fault areas, the UPM40 triaxial geostress testing system was introduced to conduct in-situ geostress measurements at three sites and nin...To minimize negative effects of geostress distribution on mining safety near the fault areas, the UPM40 triaxial geostress testing system was introduced to conduct in-situ geostress measurements at three sites and nine points by the borehole stress-relief method. The results of strain?confining pressure curves show that rock masses at the three measuring sites exhibit comprehensive linear elasticity in spite of various fissures or cracks within rocks. Horizontal and vertical stress components distribute discrepantly near the fault areas, and the maximum lateral pressure coefficient is as high as 6.15. The maximum principle stress ranges from 8.01 to 14.93 MPa, and stress directions are in the range of N78.07°W?N17.55°W. Geostresses near fault areas are dominated by the horizontal tectonic stresses, while the lower values, compared to those under similar geological conditions are due to stress release by the fault. Additionally, the fault and shear stress nearby are partially responsible for asymmetric elongation and southwesterly migration of orebodies.展开更多
Hydraulic fracturing treatments of oil wells are greatly affected by the perforation parameters selected. The three-dimensional finite element model together with the tensile criterion of rock materials is employed t...Hydraulic fracturing treatments of oil wells are greatly affected by the perforation parameters selected. The three-dimensional finite element model together with the tensile criterion of rock materials is employed to systematically investigate the influence of perforation parameters, such as perforation density, perforation orientation, perforation diameter, and perforation length as well as wellbore ellipticity, in vertical wells on the formation fracturing pressure. Based on a six-month simulation research in the University of Petroleum, China, several conclusions are drawn for the first time. Perforation density and perforation orientation angle are the most important parameters controlling the formation fracturing pressure. As the perforation density increases, the fracturing pressure decreases, not linearly but progressively. The fracturing pressure increases with the perforation orientation angle only when the angle is less than 45 degrees, and the relationship becomes very flat when the angle is 45 degrees. However, with regards to the perforation diameter and perforation length, their influences are much slighter. The wellbore ellipticity has a significant effect on the formation fracturing pressure. It is obvious that fracturing pressure increases linearly with the ellipticity of the wellbore.展开更多
We establish a patchy saturation model and derive the seismic wave equations for patchy saturated porous media on the basis of Biot's equations and Johnson's bulk modulus. We solve the equations, obtain the attenuat...We establish a patchy saturation model and derive the seismic wave equations for patchy saturated porous media on the basis of Biot's equations and Johnson's bulk modulus. We solve the equations, obtain the attenuation coefficients, and analyze the characteristics of wave attenuation in the seismic frequency range. The results suggest that seismic waves show attenuation and dispersion in partially saturated rocks in the low frequency range. With frequency increasing, attenuation increases. The attenuation of P-waves of the second kind is more pronounced in agreement with Biot's theory. We also study the effect of porosity, saturation, and inner sphere radius on the attenuation of the P-waves of the first kind and find that attenuation increases with increasing frequency and porosity, and decreases with increasing frequency and degree of saturation. As for the inner sphere radius, wave attenuation is initially increasing with increasing frequency and inner sphere radius less than half the outer radius. Subsequently, wave attenuation decreases with increasing frequency and inner sphere radius is higher than half the outer sphere radius.展开更多
In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole st...In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole stress gauge was adopted to measure the mining-induced stress. In the in situ stress measuring, the technique of improved hollow inclusion cells was adopted, which can realize complete temperature compensation. Based on the measuring results, the distribution model of in situ stress was established and analyzed. The in situ stress measuring result shows that the maximum horizontal stress is 1.75-2.45 times of vertical stress and almost 1.83 times of the minimum horizontal stress in this mineral field. And the mining-induced stress measuring result shows that, according to the magnitude of front abutment pressure the stress region can be separated into stress-relaxed area, stress- concentrated area and initial stress area. At the -50 m mining level of this mine, the range of stress-relaxed area is 0-3 m before mining face; the range of stress-concentrated area is 3-55 m before mining face, and the maximum mining-induced stress is 16.5-17.5 MPa, which is 15-20 m from the mining face. The coefficient of stress concentration is 1.85.展开更多
Convective pore-fluid flow (CPFF) plays a critical role in generating mineral deposits and oil reservoirs within the deep Earth. Therefore, theoretical understanding and numerical modeling of the thermodynamic process...Convective pore-fluid flow (CPFF) plays a critical role in generating mineral deposits and oil reservoirs within the deep Earth. Therefore, theoretical understanding and numerical modeling of the thermodynamic process that triggers and controls the CPFF are extremely important for the exploration of new mineral deposits and underground oil resources. From the viewpoint of science, the CPFF within the upper crust can be treated as a kind of thermodynamic instability problem of pore-fluid in fluid-saturated porous media. The key issue of dealing with this kind of problem is to assess whether a nonlinear thermodynamic system under consideration is supercritical. To overcome limitations of using theoretical analysis and experimental methods in dealing with the CPFF problems within the upper crust, finite element modeling has been broadly employed for solving this kind of problem over the past two decades. The main purpose of this paper is to overview recent developments and applications of finite element modeling associated with solving the CPFF problems in large length-scale geological systems of complicated geometries and complex material distributions. In particular, two kinds of commonly-used finite element modeling approaches, namely the steady-state and transient-state approaches, and their advantages/disadvantages are thoroughly presented and discussed.展开更多
The spatial structure characteristics of landform are the foundation of geomorphologic classification and recognition.This paper proposed a new method on quantifying spatial structure characteristics of terrain surfac...The spatial structure characteristics of landform are the foundation of geomorphologic classification and recognition.This paper proposed a new method on quantifying spatial structure characteristics of terrain surface based on improved 3D Lacunarity model.Lacunarity curve and its numerical integration are used in this model to improve traditional classification result that different morphological types may share the close value of indexes based on global statistical analysis.Experiments at four test areas with different landform types show that improved 3D Lacunarity model can effectively distinguish different morphological types per texture analysis.Higher sensitivity in distinguishing the tiny differences of texture characteristics of terrain surface shows that the quantification method by 3D Lacu-narity model and its numerical integration presented in this paper could contribute to improving the accuracy of land-form classifications and relative studies.展开更多
During mining of lower protective coal seam, a surface borehole can efficiently extract not only the pressure-relieved gas from the protected layer, but also the gas from the mining layer gob. If the distance between ...During mining of lower protective coal seam, a surface borehole can efficiently extract not only the pressure-relieved gas from the protected layer, but also the gas from the mining layer gob. If the distance between the borehole and gob is too large, the quantity of gas drained from the protected layer decreases substantially. To solve this problem, a mathematical model for extracting pressure-relieved gas from a protected coal seam using a surface borehole was established, based on the radial gas flow theory and law of conservation of energy. The key factors influencing the quantity of gas and the drainage flow network using a surface borehole were presented. The results show that the quantity of pressure-relieved gas drained from the protected layer can be significantly increased by increasing the flow resistance of the borehole bottom. Application of this method in the Wulan Coal Mine of the Shenhua Group significantly increased the flow of pure gas and the gas concentration (by factors of 1.8 and 2.0, respectively), thus demonstrating the remarkable effects of this method.展开更多
Through integrating the state of the art scientific knowledge in different research fields, some potential mechanisms of large-scale movements of underground pore-fluids such as H2O and CO2 in the continental lithosph...Through integrating the state of the art scientific knowledge in different research fields, some potential mechanisms of large-scale movements of underground pore-fluids such as H2O and CO2 in the continental lithosphere were presented and discussed. The results show that the generation and propagation of porosity waves are important mechanisms to transport mass and heat fluxes from the continental lithospheric mantle into the lower continental crust; the generation and propagation of porosity waves, pore-fluid flow focusing through lower and middle crustal faults, advection of pore-fluids through the lower and middle crust, and whole-crust convection in some particular cases are important mechanisms to transport mass and heat fluxes from the lower into the upper continental crust; heat and mass transport through convective pore-fluid flow is the most effective mechanism of ore body formation and mineralization in hydrothermal systems; due to heat and mass exchange at the interface between the earth surface, hydrosphere and atmosphere, it is very important to consider the hydro-geological effect of the deep earth pore-fluids such as H2O and CO2 on the global warming and climate change in future investigations.展开更多
基金supported by the National Nature Science Foundation of China(Grant No.41174114)Important National Science and Technology Specific Projects(Grant No.2011ZX05025-005-010)
文摘By substituting rock skeleton modulus expressions into Gassmann approximate fluid equation, we obtain a seismic porosity inversion equation. However, conventional rock skeleton models and their expressions are quite different from each other, resuling in different seismic porosity inversion equations, potentially leading to difficulties in correctly applying them and evaluating their results. In response to this, a uniform relation with two adjusting parameters suitable for all rock skeleton models is established from an analysis and comparison of various conventional rock skeleton models and their expressions including the Eshelby-Walsh, Pride, Geertsma, Nur, Keys-Xu, and Krief models. By giving the two adjusting parameters specific values, different rock skeleton models with specific physical characteristics can be generated. This allows us to select the most appropriate rock skeleton model based on geological and geophysical conditions, and to develop more wise seismic porosity inversion. As an example of using this method for hydrocarbon prediction and fluid identification, we apply this improved porosity inversion, associated with rock physical data and well log data, to the ZJ basin. Research shows that the existence of an abundant hydrocarbon reservoir is dependent on a moderate porosity range, which means we can use the results of seismic porosity inversion to identify oil reservoirs and dry or water-saturated reservoirs. The seismic inversion results are closely correspond to well log porosity curves in the ZJ area, indicating that the uniform relations and inversion methods proposed in this paper are reliable and effective.
基金supported by the Institute of Geophysical and Geochemical Exploration(IGGE)CAGS of China(No.WH201207)
文摘Rock-physics models are constructed for hydrate-bearing sediments in the Qilian Mountains permafrost region using the K–T equation model, and modes I and II of the effective medium model. The K–T equation models the seismic wave propagation in a two-phase medium to determine the elastic moduli of the composite medium. In the effective medium model, mode I, the hydrate is a component of the pore inclusions in mode I and in mode II it is a component of the matrix. First, the P-wave velocity, S-wave velocity, density, bulk modulus, and shear modulus of the sediment matrix are extracted from logging data.. Second, based on the physical properties of the main components of the sediments, rock-physics model is established using the K–T equation, and two additional rock-physics models are established assuming different hydrate-filling modes for the effective medium. The model and actual velocity data for the hydrate-bearing sediments are compared and it is found that the rock-physics model for the hydrate-filling mode II well reproduces the actual data.
基金Projects(50934002,51104011)supported by the National Natural Science Foundation of ChinaProject(2012BAB08B02)supported by the National Key Technologies R&D Program during the 12th Five-year Plan of China
文摘To minimize negative effects of geostress distribution on mining safety near the fault areas, the UPM40 triaxial geostress testing system was introduced to conduct in-situ geostress measurements at three sites and nine points by the borehole stress-relief method. The results of strain?confining pressure curves show that rock masses at the three measuring sites exhibit comprehensive linear elasticity in spite of various fissures or cracks within rocks. Horizontal and vertical stress components distribute discrepantly near the fault areas, and the maximum lateral pressure coefficient is as high as 6.15. The maximum principle stress ranges from 8.01 to 14.93 MPa, and stress directions are in the range of N78.07°W?N17.55°W. Geostresses near fault areas are dominated by the horizontal tectonic stresses, while the lower values, compared to those under similar geological conditions are due to stress release by the fault. Additionally, the fault and shear stress nearby are partially responsible for asymmetric elongation and southwesterly migration of orebodies.
文摘Hydraulic fracturing treatments of oil wells are greatly affected by the perforation parameters selected. The three-dimensional finite element model together with the tensile criterion of rock materials is employed to systematically investigate the influence of perforation parameters, such as perforation density, perforation orientation, perforation diameter, and perforation length as well as wellbore ellipticity, in vertical wells on the formation fracturing pressure. Based on a six-month simulation research in the University of Petroleum, China, several conclusions are drawn for the first time. Perforation density and perforation orientation angle are the most important parameters controlling the formation fracturing pressure. As the perforation density increases, the fracturing pressure decreases, not linearly but progressively. The fracturing pressure increases with the perforation orientation angle only when the angle is less than 45 degrees, and the relationship becomes very flat when the angle is 45 degrees. However, with regards to the perforation diameter and perforation length, their influences are much slighter. The wellbore ellipticity has a significant effect on the formation fracturing pressure. It is obvious that fracturing pressure increases linearly with the ellipticity of the wellbore.
基金supported by the National Natural Science Foundation of China(Nos.41204089 and 41174087)the National Science and Technology Major Project(Nos.2011ZX05035-001 and 2011ZX05005-005)the National 863 Program(No.2013AA064201)
文摘We establish a patchy saturation model and derive the seismic wave equations for patchy saturated porous media on the basis of Biot's equations and Johnson's bulk modulus. We solve the equations, obtain the attenuation coefficients, and analyze the characteristics of wave attenuation in the seismic frequency range. The results suggest that seismic waves show attenuation and dispersion in partially saturated rocks in the low frequency range. With frequency increasing, attenuation increases. The attenuation of P-waves of the second kind is more pronounced in agreement with Biot's theory. We also study the effect of porosity, saturation, and inner sphere radius on the attenuation of the P-waves of the first kind and find that attenuation increases with increasing frequency and porosity, and decreases with increasing frequency and degree of saturation. As for the inner sphere radius, wave attenuation is initially increasing with increasing frequency and inner sphere radius less than half the outer radius. Subsequently, wave attenuation decreases with increasing frequency and inner sphere radius is higher than half the outer sphere radius.
基金Projects(10702072, 10632100) supported by the National Nature Science Foundation of China
文摘In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole stress gauge was adopted to measure the mining-induced stress. In the in situ stress measuring, the technique of improved hollow inclusion cells was adopted, which can realize complete temperature compensation. Based on the measuring results, the distribution model of in situ stress was established and analyzed. The in situ stress measuring result shows that the maximum horizontal stress is 1.75-2.45 times of vertical stress and almost 1.83 times of the minimum horizontal stress in this mineral field. And the mining-induced stress measuring result shows that, according to the magnitude of front abutment pressure the stress region can be separated into stress-relaxed area, stress- concentrated area and initial stress area. At the -50 m mining level of this mine, the range of stress-relaxed area is 0-3 m before mining face; the range of stress-concentrated area is 3-55 m before mining face, and the maximum mining-induced stress is 16.5-17.5 MPa, which is 15-20 m from the mining face. The coefficient of stress concentration is 1.85.
基金Project(11272359)supported by the National Natural Science Foundation of China
文摘Convective pore-fluid flow (CPFF) plays a critical role in generating mineral deposits and oil reservoirs within the deep Earth. Therefore, theoretical understanding and numerical modeling of the thermodynamic process that triggers and controls the CPFF are extremely important for the exploration of new mineral deposits and underground oil resources. From the viewpoint of science, the CPFF within the upper crust can be treated as a kind of thermodynamic instability problem of pore-fluid in fluid-saturated porous media. The key issue of dealing with this kind of problem is to assess whether a nonlinear thermodynamic system under consideration is supercritical. To overcome limitations of using theoretical analysis and experimental methods in dealing with the CPFF problems within the upper crust, finite element modeling has been broadly employed for solving this kind of problem over the past two decades. The main purpose of this paper is to overview recent developments and applications of finite element modeling associated with solving the CPFF problems in large length-scale geological systems of complicated geometries and complex material distributions. In particular, two kinds of commonly-used finite element modeling approaches, namely the steady-state and transient-state approaches, and their advantages/disadvantages are thoroughly presented and discussed.
基金Under the auspices of National Natural Science Foundation of China (No.40930531,41171320,41001301)
文摘The spatial structure characteristics of landform are the foundation of geomorphologic classification and recognition.This paper proposed a new method on quantifying spatial structure characteristics of terrain surface based on improved 3D Lacunarity model.Lacunarity curve and its numerical integration are used in this model to improve traditional classification result that different morphological types may share the close value of indexes based on global statistical analysis.Experiments at four test areas with different landform types show that improved 3D Lacunarity model can effectively distinguish different morphological types per texture analysis.Higher sensitivity in distinguishing the tiny differences of texture characteristics of terrain surface shows that the quantification method by 3D Lacu-narity model and its numerical integration presented in this paper could contribute to improving the accuracy of land-form classifications and relative studies.
文摘During mining of lower protective coal seam, a surface borehole can efficiently extract not only the pressure-relieved gas from the protected layer, but also the gas from the mining layer gob. If the distance between the borehole and gob is too large, the quantity of gas drained from the protected layer decreases substantially. To solve this problem, a mathematical model for extracting pressure-relieved gas from a protected coal seam using a surface borehole was established, based on the radial gas flow theory and law of conservation of energy. The key factors influencing the quantity of gas and the drainage flow network using a surface borehole were presented. The results show that the quantity of pressure-relieved gas drained from the protected layer can be significantly increased by increasing the flow resistance of the borehole bottom. Application of this method in the Wulan Coal Mine of the Shenhua Group significantly increased the flow of pure gas and the gas concentration (by factors of 1.8 and 2.0, respectively), thus demonstrating the remarkable effects of this method.
基金Project(10672190) supported by the National Natural Science Foundation of China
文摘Through integrating the state of the art scientific knowledge in different research fields, some potential mechanisms of large-scale movements of underground pore-fluids such as H2O and CO2 in the continental lithosphere were presented and discussed. The results show that the generation and propagation of porosity waves are important mechanisms to transport mass and heat fluxes from the continental lithospheric mantle into the lower continental crust; the generation and propagation of porosity waves, pore-fluid flow focusing through lower and middle crustal faults, advection of pore-fluids through the lower and middle crust, and whole-crust convection in some particular cases are important mechanisms to transport mass and heat fluxes from the lower into the upper continental crust; heat and mass transport through convective pore-fluid flow is the most effective mechanism of ore body formation and mineralization in hydrothermal systems; due to heat and mass exchange at the interface between the earth surface, hydrosphere and atmosphere, it is very important to consider the hydro-geological effect of the deep earth pore-fluids such as H2O and CO2 on the global warming and climate change in future investigations.