The major element, trace element and rare earth element(REE) of the intrusion rock from the Dachang ore field in Guangxi, China, were analyzed. The results show that the phenocryst(about 15%) and matrix(about 85%...The major element, trace element and rare earth element(REE) of the intrusion rock from the Dachang ore field in Guangxi, China, were analyzed. The results show that the phenocryst(about 15%) and matrix(about 85%) mainly consist of quartz, K-feldspar and plagioclase. The rock is composed of low content of Si and high content of Al2O3, low contents of Ca, Fe2O3, Na, TiO2, etc. The intrusion rock has the medium alkali content, attributing to K-rich type rock; and contains medium to low REE contents, of which light rare earth elements(LREEs) and heavy rare earth elements(HREEs) are highly fractionated, showing a weak negative Ce anomaly and a negative Eu anomaly. These rocks are enriched in LREE, and the large ion lithophytes elements(LILE) are rich in Rb, Sr, and U; the high-field-strength elements(Nb, Th, etc) are relatively depleted. The REE chondrite-normalized patterns are consistent with the overall, roughly indicating their similar characteristics, sources and evolution. The intrusion rock mainly formed during the collisional and within-plate periods.展开更多
Skarn is the main altered rock type and is of great importance to mineralization and ore-prospecting in the Shizhuyuan area of Hunan province, China. Its features of petrography, mineralogy and geochemistry were st...Skarn is the main altered rock type and is of great importance to mineralization and ore-prospecting in the Shizhuyuan area of Hunan province, China. Its features of petrography, mineralogy and geochemistry were studied systematically. The results show that the skarn mainly consists of garnet skarn, secondary wollastonite-garnet skarn, tremolite-clinozoisite skarn, and few wolframine garnet skarn, idocrase-garnet skarn and wollastonite skarn with granoblastic texture, granular sheet crystalloblastic texture, and massive structure, disseminated structure, mesh-vein structure, comb structure, and banded structure. And, it is mainly composed of garnet, fluorite, chlorite, hornblende, epidote, tremolite, plagioclase, biotite, muscovite, plagioclase, quartz, idocrase, and calcite and so on. The chemical components mainly include SiO2, Al2O3, Fe2O3, MgO and CaO, and the trace elements and REEs consist of Li, Be, V, Co, Zn, Ga, Rb, Sr, Y, Ce, Nd, Pb and Bi, etc. And, the obvious fractionation exists between LREE and HREE, and it shows typical features of Nanling ore-forming granite for W?Sn polymetallic deposit. Skarn is derived from the sedimentary rock, such as limestone, mudstone, argillaceous rock, and few pelitic strips. It is affected by both Shetianqiao formation strata and Qianlishan granite during the diagenesis, indicating a strong reduction environment. The occurrence of skarn, whose mutation site is favorable to the mineralization enrichment, is closely related to the mineralization and prospecting.展开更多
The Qujiashan manganese deposit is located in the Longmen-Daba fold belt along the northern margin of the Yangtze Block. The layered ore bodies are distributed within the purple-red calcareous shale. Qujiashan is a hi...The Qujiashan manganese deposit is located in the Longmen-Daba fold belt along the northern margin of the Yangtze Block. The layered ore bodies are distributed within the purple-red calcareous shale. Qujiashan is a high-grade w(MnO)=8.92% to 18.76%) manganese deposit with low-phosphorus w(P2O5)=0.08% to 0.16%) content. It also has a low total REEs contents(with an average of 101.3×10-6), and has inconspicuous Ce(0.81 to 1.29) and Eu(1.00 to 1.25) anomalies. lg(Ce/Ce*) values are from-0.02 to 0.11. The ores have high SiO2/Al2O3 and Al/(Al + Fe + Mn) ratios. In figures of Fe–Mn–[(Ni+Cu+Co)×10] and lgU–lgTh, all samples show that hydrothermal exhalative fluids played an important role during mineralisation. The δ13CPDB and δ18OSMOW values of eight ore samples are from-20.7‰ to-8.2‰(with an average of-12.4‰) and from 14.3‰ to 18.7‰(with an average of 17.0‰), respectively. These carbon and oxygen isotopic features indicate that hydrothermal fluids derived from deep earth are participation in the metallogenic process, which is also supported by high paleo-seawater temperatures varying from 47.08 to 73.98 °C. Therefore, the geological and geochemical evidences show that the Qujiashan deposit formed from submarine exhalative hydrothermal sedimentation.展开更多
This paper summarizes recent data about magnesite and talc genesis in Carboniferous host rocks of Western Carpathians (Slovakia) , which occur in two distinct belts in tectonic superunit Veporicum and its contact zone...This paper summarizes recent data about magnesite and talc genesis in Carboniferous host rocks of Western Carpathians (Slovakia) , which occur in two distinct belts in tectonic superunit Veporicum and its contact zone with Gemericum. The northern Sinec magnesite and talc belt (with main deposits Kokava, Sinec, Samo, Hnust'a-Mutnik) contains economic accummulation of magnesite and talc, while in the southern Ochtina belt ( main deposits in Dubrava massif-Dubrava, Mikova, Jedl'ovec; Lubenik, Ochtina, Kosice-Bankov, Banisko, Medvedia) the magnesite is dominating.The magnesite genesis by successive replacement of Carboniferous calcite to dolomite and magnesite during metamorphic process Ml (northern belt 280-400℃; , southern belt 370-420℃: ; Radvanec & Prochaska, 2001; Kodera & Radvanec, 2002) , being supplied by Mg from Permoscythian evaporitic bittern brines, relates to Variscan post-collisional (post-VD) evolution. The extensional tectonics and the high heat flow facilitated the generation of a hydrothermal system.The time-separated later metamorphic and sourcely different fluid flow event (M2; 1. c. ) produced talc. Tectonic, microtectonic, metamorphic and geochronological data relate the talc origin with the Alpine Upper Cretaceous (88-84 Ma; Maluski in Kovacik et al. , 1996) tectonothermal event AD2. This event, being the consequence of Alpine collisional ( AD1 ) crustal thickening and metamorphic core complex origin, meant regional extension and pervasive fluid flow of open system in crustal discontinuities. This process was prominent in the northern belt ( Sinec shear zone) located more closely to Veporic thermal dome, while towards its peripheral parts (southern Ochtina belt) the M2 metamorphic process and steatitization gradually weakened.Studies from Sinec shear zone (being the prominent AD2 -AD3 structure of northern Sinec belt) , where the dolomite/magnesite lenses (replacement in M1) and their accompanying lithology were in AD1 sandwitched between more competent basement blocks, proved in AD2 the pervasite steatitization, the talc and dolomite 2 origin in extensional microstructures ( metamorphic process M2; 490 -540℃, 240-330 MPa, 1. c. ).The economic accummulations of talc in Sinec belt are the products of antithetic shearing during the AD3 phase, being the gradual continuation of AD2 ( change of kinematics from unroofing to regional transpressional shearing). Contrary to the northern Sinec belt having located the AD3 deformation into narrow shear zone with soft lithology surrounded by hard lithology, in southern Ochtina belt the deformation AD3 was accommodated by wide soft rock column with rigid carbonate blocks floating inside. The lower P-T ( M2)conditions and deformational gradient in Ochtina belt during AD2 and AD3 phases caused why no economic talc accummulations developed there.The results of presented study can be used as general criteria for magnesite and talc prospection in Alpine type terranes.展开更多
Zircon LA-ICP-MS U-Pb age and whole-rock geochemistry data are presented for the Hutouya grano-diorite porphyries in Mengyin, western Shandong, to restrict its petrogenesis. The analyzed zircons exhibit os-cillatory g...Zircon LA-ICP-MS U-Pb age and whole-rock geochemistry data are presented for the Hutouya grano-diorite porphyries in Mengyin, western Shandong, to restrict its petrogenesis. The analyzed zircons exhibit os-cillatory growth zoning and core-rim textures in the cathodoluminescence images and have high Th/U ratios (0.04-1.66),indicating its magmatic origin. The youngest group of magmatic zircon yields weighted mean 206Pb/238U age of 132 ±2 Ma, which represents the forming age of the granodiorite porphyries, i. e., the Early Cretaceous. The oldest group of magmatic zircon 207Pb/206Pb ages ranges from 2 398 Ma to 2 370 Ma, yielding a weighted mean age of 2 389 ±23 Ma,suggesting that the basement of the North China Craton should exist in the research area. Geochemically, the samples are characterized by high Si02(70. 38% and 64. 87% ) , low MgO (0.60% and 1. 53% ) and Mg# values (42. 92 and 50. 42). Moreover, they show enrichment of light rare earth elements and large ion lithophile elements (e. g. Rb, Ba and K) , depletion of heavy rare earth ele-ments and high field strength elements (e. g. Nb and Ta) , positive anomaly of Pb, and negative anomaly of Ti. These results, together with previously published data, indicate that the Hutouya granodiorite porphyries were derived from partial melting of a delaminated lower continental crust and subsequent interaction with the mantle peridotites. They are consistent with the period of lithospheric thinning beneath the eastern North China Craton and may be formed in an extensional tectonic environment.展开更多
The origin and quality of groundwater in the Southeastern region (belongs to Southern Plain) were identified by using isotopic techniques and geochemical analysis. Groundwater samples were collected from 7 aquifers...The origin and quality of groundwater in the Southeastern region (belongs to Southern Plain) were identified by using isotopic techniques and geochemical analysis. Groundwater samples were collected from 7 aquifers: the Holocene, upper Pleistocene, middle Pleistocene, lower Pleistocene, upper Pliocene, middle Pliocene and Miocene aquifers. The water isotopic compositions (82H and 8180) were determined to elucidate the origin and the interaction between surface water and groundwater studies. Transit time (age) of the groundwater samples was determined to explain the direction of groundwater flow. The dating techniques included 3H and ^14C isotopes measurement, followed by a correction for the initial ^14C-activity by the ^13C-composition (^13C) in TDIC (Total Dissolved Inorganic Carbon). Geochemical parameters of the groundwater samples were measured either directly in the field or in the laboratory. The results showed that the groundwater from the Holocene and upper Pleistocene aquifers was most recharged from the local meteorological and hydrological systems, including local precipitation, fiver and reservoirs. Thus, it has short transit time and its stable isotopic composition is spread around the local meteoric waterline and lines for rivers or reservoirs water. The groundwater in the deeper aquifers: middle and lower Pleistocene, and Neogene aquifers has old age up to 22.5 ka BP. Its water seems to be recharged from the areas with an altitude from 600 to 700 m higher to the Neogene deposit layer altitude. The groundwater in the SE SP (South-Eastern Southern Plain) region has a high quality. The water type is Na-Ca-Mg-HCO3 with low content of chloride and TDS (Total Dissolved Solids). Calcite/dolomite and gypsum dissolution, organic matter decomposition and sequence of red-ox reactions proceeding through different electron acceptors sediment were controlled the chemistry of the groundwater in the study region.展开更多
The Wadi Bayhan mafic-uhramafic intrusions associated with magmatic PGE-bearing Cu-Ni sulphide deposit are located in the south margin of the Arabian-Nubian Shield, SW Yemen. The intrusions consist of du- nite, olivin...The Wadi Bayhan mafic-uhramafic intrusions associated with magmatic PGE-bearing Cu-Ni sulphide deposit are located in the south margin of the Arabian-Nubian Shield, SW Yemen. The intrusions consist of du- nite, olivine-pyroxenite, lherzolite, hornblendite, gabbro and gabbronorite. The dunite and lherzolite are the main host rock for the Cu-Ni ores. The new data of the chemical compositions of the rocks have SiO2 (50% - 53.6% ), AI203 (0-32%) and MgO (4%-28%), and relatively low TiO2 (0-3.2%) and K2 0 + Na20 (0. 04% - 5.2% ). The geochemical characteristics indicate that the parental magma is high-magnesium tholeiitic. Sulfur had reached saturation and immiscible sulfides droplets segregated from silicate magmas before their emplacement.展开更多
The determination of the geographical origin as well as the adulteration of natural products is a technical problem due to similar chemical composition between an adulterant and the original. It is assumed that tartar...The determination of the geographical origin as well as the adulteration of natural products is a technical problem due to similar chemical composition between an adulterant and the original. It is assumed that tartaric acid comes from natural sources, however there is no specific regulation for this claim. This paper describes the use of isotope mass spectrometry associated with chemometrics to classify different samples of tartaric acid. The results showed that the variables δ^13C, δ^18O and δ^2H allowed the discrimination of tartaric acid samples by geographical origin and production method. By using a combination of chemometfic analysis it was possible to confirm a notoriousseparation of the samples. Thus, this is a promising method to be applied in the quality control and authenticity of tartaric acid.展开更多
The samples from the hidden Daqiling muscovite monzonite granite, which has recently been recognized within the Limu Sn-polymetallic ore field, have been analyzed for zircon U-Pb ages and whole rock geochemical and Nd...The samples from the hidden Daqiling muscovite monzonite granite, which has recently been recognized within the Limu Sn-polymetallic ore field, have been analyzed for zircon U-Pb ages and whole rock geochemical and Nd-Hf isotopic compositions to discuss its genesis, source, and tectonic setting. LA-ICP-MS zircon U-Pb dating indicates that the granite crystallized in the late Indosinian(224.8±1.6 Ma). The granite is enriched in SiO2 and K2 O and low in CaO and Na2 O. It is strongly peraluminous with the A/CNK values of 1.09–1.20 and 1.4 vol%–2.7 vol% normal corundum. Chondrite-normalized REE patterns show slightly right-dipping shape with strongly negative Eu anomalies(δEu =0.08–0.17). All samples show enrichment of LILEs(Cs, Rb and K) and HFSEs(U, Pb, Ce and Hf), but have relatively low contents of Ba, Sr and Ti. The zircon saturation temperatures(Tzr) are from 711 to 740°C, which are slightly lower than the average value of typical S-type granite(764°C). The granite has negative εNd(t) and εHf(t) values, which change from ?9.1 to ?10.1 with the peak values of ?9.2 to ?9.0 and from ?3.7 to ?12.6 with the peak values of ?6 to ?5, respectively. The C DMT(Nd) and C DMT(Hf) values are 1.74–1.82 Ga with the peak values of 1.73–1.75 Ga and 1.49–2.04 Ga with the peak values of 1.5–1.6 Ga, respectively. These characteristics reveal that the source region of the granite is dominantly late Paleoproterozoic to early Mesoproterozoic crustal materials. Seven inherited magmatic zircons are dated at the age of 248.6±4.3 Ma, which suggests the existence of the early Indosinian granite in Limu area. These zircons have the εHf(t) values of ?6.7– ?2.3, similar to those of the Daqiling granite, implying the involvement of the early Indosinian granite during the formation of the Daqiling granite. Inherited zircon of 945±11 Ma has the εHf(t) and TDM(Hf) values of 8.7 and 1.14 Ga, respectively, compatible with those of the Neoproterozoic arc magmatic rocks in the eastern Jiangnan orogenic belt. Therefore we inferred that Neoproterozoic arc magma might have been involved in the formation of the Daqiling granite, and that the Neoproterozoic arc magma belt and continent-arc collision belt between the Yangtze and Cathaysia Blocks might have extended westsouthward to Limu region. It is proposed that the underplating of mantle materials triggered by crustal extension and thinning resulted in partial melting of crustal materials to form the Daqiling granite in the late Indosinian under post-collisional tectonic setting.展开更多
This paper reports the systematic study on petrology, geochemistry, LA ICPMS zircons U-Pb dating, and in situ Hf isotope geology of the four plutons in the central-southern Jiangxi Province, an important part of the S...This paper reports the systematic study on petrology, geochemistry, LA ICPMS zircons U-Pb dating, and in situ Hf isotope geology of the four plutons in the central-southern Jiangxi Province, an important part of the South China Block. In the outcrops, rocks are gradually changed from wall rock (slate or schist) to pluton (gneissic granite); some residual blocks of sandy rock occur in the margin of pluton, and the foliations of residual blocks are parallel to those of both wail rock and gneissic granite. The thin-section observations show that the four plutons contain peraluminous minerals such as muscovite and sillimanite. The flattened and elongated feldspar and quartz grains are often visible in the gneissic granite, parallel to direction of lineation, suggesting that the granitic rock were subjected to a strong ductile sheafing. Geochemically, the A/CNK values from 13 granitic samples are between 1.03 and 1.37 with an average of 1.16, indicating that the granites are of strongly peraluminous plutons. The REE compositions of the 13 samples are similar, showing higher EREE contents, with enrichment in LREEs, depletion in Eu and REE patterns with relative LREE-enrichment and negligible Eu anomalies. They show enrichment in Rb, Th, U and depletion in Ba, Sr, Nb, Ti, belonging to a low Ba-Sr type of granite. Thus, the four bodies should be derived from the same magmatic source. Zircons used as U-Pb dating mostly exhibit euhedral shape and high Th/U values from 0.52 to 1.54 with an average of 1.08, suggesting that most zircons are of magmatic genesis. The zircons from four plutons yielded rather similar 206pb/238U vs. 207Tpb/235U concordia ages: 436.1±5.7 Ma for the Tangwan granite, 440.6±4 Ma for the Jiekou gneissic granite, 435.9±6.2 Ma for the Dongbao gneissic granite, and 441.9±3.1 Ma for the Jinxi K-granite, respectively, corresponding to Silurian Llandovery. Several xenocrysts yielded U-Pb ages around 700 Ma, implying that a breakup event took place during Neoproterozoic in the South China Block. In situ Lu-Hf isotopic analysis shows that all εHf(t) values of zircons are negative and have two-stage Hf model ages (TDM2) from 1.4 to 3.6 Ga, indicating that the Silurian granitic magma came from the re- cycle of Meso-Paleoproterozoic basement and even partly Archean rocks, and had not been effected by mantle magma. Re- searches on regional geology suggest that an intracontinental tectono-magmatic event took place during the early Paleozoic in the study areas, which is characterized by folding and thrusting, leading to crustal shortening and thickening, up to 20 km thickness. The high geothermal temperature from thickening crust and accumulation of producing high-heat radioactive elements gradually softened crustal rocks and caused a partial melting, forming peraluminous granitic magma. Under the post-orogenic extensional and de-pressure condition, these granitic magma rose and was emplaced in the upper crust, leading to development of S-type plutons展开更多
From the 1960 s to 1970 s, North China has been hit by a series of large earthquakes. During the past half century,geophysicists have carried out numerous surveys of the crustal and upper mantle structure, and associa...From the 1960 s to 1970 s, North China has been hit by a series of large earthquakes. During the past half century,geophysicists have carried out numerous surveys of the crustal and upper mantle structure, and associated studies in North China.They have made significant progress on several key issues in the geosciences, such as the crustal and upper mantle structure and the seismogenic environment of strong earthquakes. Deep seismic profiling results indicate a complex tectonic setting in the strong earthquake areas of North China, where a listric normal fault and a low-angle detachment in the upper crust coexist with a high-angle deep fault passing through the lower crust to the Moho beneath the hypocenter. Seismic tomography images reveal that most of the large earthquakes occurred in the transition between the high-and low-velocity zones, and the Tangshan earthquake area is characterized by a low-velocity anomaly in the middle-lower crust. Comprehensive analysis of geophysical data identified that the deep seismogenic environment in the North China extensional tectonic region is generally characterized by a low-velocity anomalous belt beneath the hypocenter, inconsistency of the deep and shallow structures in the crust, a steep crustalal-scale fault,relative lower velocities in the uppermost mantle, and local Moho uplift, etc. This indicates that the lithospheric structure of North China has strong heterogeneities. Geologically, the North China region had been a stable craton named the North China Craton or in brief the NCC, containing crustal rocks as old as ~3.8 Ga. The present-day strong seismic activity and the lower velocity of the lower crust in the NCC are much different from typical stable cratons around the world. These findings provide significant evidence for the destruction of the NCC. Although deep seismic profiling and seismic tomography have greatly enhanced knowledge about the deep-seated structure and seismogenic environment, some fundamental issues still remain and require further work.展开更多
Lithologically, two kinds of chert can be recognized in the Middle-Upper Permian from the Tieqiao section in Laibin area, Guangxi, i.e., calcic chert occurring mainly in the Maokou Formation and pure chert mainly in t...Lithologically, two kinds of chert can be recognized in the Middle-Upper Permian from the Tieqiao section in Laibin area, Guangxi, i.e., calcic chert occurring mainly in the Maokou Formation and pure chert mainly in the Wujiaping Formation. Geochemical data show that both kinds of chert contain very low A1203 (0-0.23%) and TiO2 (0.001%-0.024%) and low ZREE (0.55-19.94 ppm, averaging 9.97 ppm), as well as high ratio of Fe2O3/TiO2 (17-443, averaging 111) and low ratio of A1203/(Al2O3+Fe203) (0-0.26, averaging 0.09). Given that the average value Ce anomalies in chert deposited in the ridge-proximal environment is about 0.29, and that in the pelagic environment is about 0.60, the low Ce anomalies in the Tieqiao chert (0.24-0.46, averaging 0.35) imply that they were deposited in an ocean basin with influence of submarine hydrothermal fluid and no input of terrigenous materials. The vertical variation of the silica abundance in strata (SAIS) in the Middle-Upper Permian strata, together with the Eu anomalies and the ratios of ∑REE/Fe, indicates a relationship between the hydrothermal activity and the Emeishan basalt eruption, and that submarine hydrothermal activity was stronger in the Upper Permian (the Wujiapingian Stage) than in the Middle Permian (the Maokou Stage).展开更多
High-Mg (Mg#〉45) andesites (HMA) within cratons attract great attention from geologists. Their origin remains strongly debated. In order to examine and provide direct evidence for previous assumptions about HMA'...High-Mg (Mg#〉45) andesites (HMA) within cratons attract great attention from geologists. Their origin remains strongly debated. In order to examine and provide direct evidence for previous assumptions about HMA's genesis inferred from petrolog- ical and geochemical investigations, we performed reaction experiments between tonalitic melt and mantle olivine on a six-anvil apparatus at high-temperature of 1250-1400℃ and high-pressure of 2.0-5.0 GPa. Our experiments in this work simulated the interaction between the tonalitic melt derived from partial melting of eclogitized lower crust foundering into the Earth's mantle and mantle peridotite. The experimental results show that the reacted melts have very similar variations in chemical compositions to the HMAs within the North China Craton. Therefore, this interaction is probably an important pro- cess to generate the HMAs within crations.展开更多
基金Project(41202051)supported by the National Natural Science Foundation of ChinaProject([2014]76)supported by the Platform of Scientific and Technological Innovation for Hunan Youth,China+1 种基金Project(2014T70886)supported by the Special Program of the Postdoctoral Science Foundation of ChinaProject(2012M521721)supported by China Postdoctoral Science Foundation
文摘The major element, trace element and rare earth element(REE) of the intrusion rock from the Dachang ore field in Guangxi, China, were analyzed. The results show that the phenocryst(about 15%) and matrix(about 85%) mainly consist of quartz, K-feldspar and plagioclase. The rock is composed of low content of Si and high content of Al2O3, low contents of Ca, Fe2O3, Na, TiO2, etc. The intrusion rock has the medium alkali content, attributing to K-rich type rock; and contains medium to low REE contents, of which light rare earth elements(LREEs) and heavy rare earth elements(HREEs) are highly fractionated, showing a weak negative Ce anomaly and a negative Eu anomaly. These rocks are enriched in LREE, and the large ion lithophytes elements(LILE) are rich in Rb, Sr, and U; the high-field-strength elements(Nb, Th, etc) are relatively depleted. The REE chondrite-normalized patterns are consistent with the overall, roughly indicating their similar characteristics, sources and evolution. The intrusion rock mainly formed during the collisional and within-plate periods.
基金Project(41202051)supported by the National Natural Science Foundation of ChinaProject(2015CX008)supported by the Innovation-driven Plan in Central South University,China+4 种基金Project(2016JJ1022)supported by Hunan Provincial Natural Science Outstanding Youth Foundation of ChinaProject(CSUZC201601)supported by the Open-end Fund for the Valuable and Precision Instruments of Central South University,ChinaProject(2014T70886)supported by the Special Program of the Postdoctoral Science Foundation of ChinaProject(2012M521721)supported by China Postdoctoral Science FoundationProject(XKRZ[2014]76)supported by the Platform of Scientific and Technological Innovation for Hunan Youth,China
文摘Skarn is the main altered rock type and is of great importance to mineralization and ore-prospecting in the Shizhuyuan area of Hunan province, China. Its features of petrography, mineralogy and geochemistry were studied systematically. The results show that the skarn mainly consists of garnet skarn, secondary wollastonite-garnet skarn, tremolite-clinozoisite skarn, and few wolframine garnet skarn, idocrase-garnet skarn and wollastonite skarn with granoblastic texture, granular sheet crystalloblastic texture, and massive structure, disseminated structure, mesh-vein structure, comb structure, and banded structure. And, it is mainly composed of garnet, fluorite, chlorite, hornblende, epidote, tremolite, plagioclase, biotite, muscovite, plagioclase, quartz, idocrase, and calcite and so on. The chemical components mainly include SiO2, Al2O3, Fe2O3, MgO and CaO, and the trace elements and REEs consist of Li, Be, V, Co, Zn, Ga, Rb, Sr, Y, Ce, Nd, Pb and Bi, etc. And, the obvious fractionation exists between LREE and HREE, and it shows typical features of Nanling ore-forming granite for W?Sn polymetallic deposit. Skarn is derived from the sedimentary rock, such as limestone, mudstone, argillaceous rock, and few pelitic strips. It is affected by both Shetianqiao formation strata and Qianlishan granite during the diagenesis, indicating a strong reduction environment. The occurrence of skarn, whose mutation site is favorable to the mineralization enrichment, is closely related to the mineralization and prospecting.
基金Project(41663006)supported by the National Natural Science Foundation of ChinaProject(1212011220725)supported by the Geological Survey Project of the China Geological Survey
文摘The Qujiashan manganese deposit is located in the Longmen-Daba fold belt along the northern margin of the Yangtze Block. The layered ore bodies are distributed within the purple-red calcareous shale. Qujiashan is a high-grade w(MnO)=8.92% to 18.76%) manganese deposit with low-phosphorus w(P2O5)=0.08% to 0.16%) content. It also has a low total REEs contents(with an average of 101.3×10-6), and has inconspicuous Ce(0.81 to 1.29) and Eu(1.00 to 1.25) anomalies. lg(Ce/Ce*) values are from-0.02 to 0.11. The ores have high SiO2/Al2O3 and Al/(Al + Fe + Mn) ratios. In figures of Fe–Mn–[(Ni+Cu+Co)×10] and lgU–lgTh, all samples show that hydrothermal exhalative fluids played an important role during mineralisation. The δ13CPDB and δ18OSMOW values of eight ore samples are from-20.7‰ to-8.2‰(with an average of-12.4‰) and from 14.3‰ to 18.7‰(with an average of 17.0‰), respectively. These carbon and oxygen isotopic features indicate that hydrothermal fluids derived from deep earth are participation in the metallogenic process, which is also supported by high paleo-seawater temperatures varying from 47.08 to 73.98 °C. Therefore, the geological and geochemical evidences show that the Qujiashan deposit formed from submarine exhalative hydrothermal sedimentation.
文摘This paper summarizes recent data about magnesite and talc genesis in Carboniferous host rocks of Western Carpathians (Slovakia) , which occur in two distinct belts in tectonic superunit Veporicum and its contact zone with Gemericum. The northern Sinec magnesite and talc belt (with main deposits Kokava, Sinec, Samo, Hnust'a-Mutnik) contains economic accummulation of magnesite and talc, while in the southern Ochtina belt ( main deposits in Dubrava massif-Dubrava, Mikova, Jedl'ovec; Lubenik, Ochtina, Kosice-Bankov, Banisko, Medvedia) the magnesite is dominating.The magnesite genesis by successive replacement of Carboniferous calcite to dolomite and magnesite during metamorphic process Ml (northern belt 280-400℃; , southern belt 370-420℃: ; Radvanec & Prochaska, 2001; Kodera & Radvanec, 2002) , being supplied by Mg from Permoscythian evaporitic bittern brines, relates to Variscan post-collisional (post-VD) evolution. The extensional tectonics and the high heat flow facilitated the generation of a hydrothermal system.The time-separated later metamorphic and sourcely different fluid flow event (M2; 1. c. ) produced talc. Tectonic, microtectonic, metamorphic and geochronological data relate the talc origin with the Alpine Upper Cretaceous (88-84 Ma; Maluski in Kovacik et al. , 1996) tectonothermal event AD2. This event, being the consequence of Alpine collisional ( AD1 ) crustal thickening and metamorphic core complex origin, meant regional extension and pervasive fluid flow of open system in crustal discontinuities. This process was prominent in the northern belt ( Sinec shear zone) located more closely to Veporic thermal dome, while towards its peripheral parts (southern Ochtina belt) the M2 metamorphic process and steatitization gradually weakened.Studies from Sinec shear zone (being the prominent AD2 -AD3 structure of northern Sinec belt) , where the dolomite/magnesite lenses (replacement in M1) and their accompanying lithology were in AD1 sandwitched between more competent basement blocks, proved in AD2 the pervasite steatitization, the talc and dolomite 2 origin in extensional microstructures ( metamorphic process M2; 490 -540℃, 240-330 MPa, 1. c. ).The economic accummulations of talc in Sinec belt are the products of antithetic shearing during the AD3 phase, being the gradual continuation of AD2 ( change of kinematics from unroofing to regional transpressional shearing). Contrary to the northern Sinec belt having located the AD3 deformation into narrow shear zone with soft lithology surrounded by hard lithology, in southern Ochtina belt the deformation AD3 was accommodated by wide soft rock column with rigid carbonate blocks floating inside. The lower P-T ( M2)conditions and deformational gradient in Ochtina belt during AD2 and AD3 phases caused why no economic talc accummulations developed there.The results of presented study can be used as general criteria for magnesite and talc prospection in Alpine type terranes.
基金Supported by projects of the Natural Science Foundation of China(41472052)Basic Scientific Research Foundation of Central Universities of China
文摘Zircon LA-ICP-MS U-Pb age and whole-rock geochemistry data are presented for the Hutouya grano-diorite porphyries in Mengyin, western Shandong, to restrict its petrogenesis. The analyzed zircons exhibit os-cillatory growth zoning and core-rim textures in the cathodoluminescence images and have high Th/U ratios (0.04-1.66),indicating its magmatic origin. The youngest group of magmatic zircon yields weighted mean 206Pb/238U age of 132 ±2 Ma, which represents the forming age of the granodiorite porphyries, i. e., the Early Cretaceous. The oldest group of magmatic zircon 207Pb/206Pb ages ranges from 2 398 Ma to 2 370 Ma, yielding a weighted mean age of 2 389 ±23 Ma,suggesting that the basement of the North China Craton should exist in the research area. Geochemically, the samples are characterized by high Si02(70. 38% and 64. 87% ) , low MgO (0.60% and 1. 53% ) and Mg# values (42. 92 and 50. 42). Moreover, they show enrichment of light rare earth elements and large ion lithophile elements (e. g. Rb, Ba and K) , depletion of heavy rare earth ele-ments and high field strength elements (e. g. Nb and Ta) , positive anomaly of Pb, and negative anomaly of Ti. These results, together with previously published data, indicate that the Hutouya granodiorite porphyries were derived from partial melting of a delaminated lower continental crust and subsequent interaction with the mantle peridotites. They are consistent with the period of lithospheric thinning beneath the eastern North China Craton and may be formed in an extensional tectonic environment.
文摘The origin and quality of groundwater in the Southeastern region (belongs to Southern Plain) were identified by using isotopic techniques and geochemical analysis. Groundwater samples were collected from 7 aquifers: the Holocene, upper Pleistocene, middle Pleistocene, lower Pleistocene, upper Pliocene, middle Pliocene and Miocene aquifers. The water isotopic compositions (82H and 8180) were determined to elucidate the origin and the interaction between surface water and groundwater studies. Transit time (age) of the groundwater samples was determined to explain the direction of groundwater flow. The dating techniques included 3H and ^14C isotopes measurement, followed by a correction for the initial ^14C-activity by the ^13C-composition (^13C) in TDIC (Total Dissolved Inorganic Carbon). Geochemical parameters of the groundwater samples were measured either directly in the field or in the laboratory. The results showed that the groundwater from the Holocene and upper Pleistocene aquifers was most recharged from the local meteorological and hydrological systems, including local precipitation, fiver and reservoirs. Thus, it has short transit time and its stable isotopic composition is spread around the local meteoric waterline and lines for rivers or reservoirs water. The groundwater in the deeper aquifers: middle and lower Pleistocene, and Neogene aquifers has old age up to 22.5 ka BP. Its water seems to be recharged from the areas with an altitude from 600 to 700 m higher to the Neogene deposit layer altitude. The groundwater in the SE SP (South-Eastern Southern Plain) region has a high quality. The water type is Na-Ca-Mg-HCO3 with low content of chloride and TDS (Total Dissolved Solids). Calcite/dolomite and gypsum dissolution, organic matter decomposition and sequence of red-ox reactions proceeding through different electron acceptors sediment were controlled the chemistry of the groundwater in the study region.
文摘The Wadi Bayhan mafic-uhramafic intrusions associated with magmatic PGE-bearing Cu-Ni sulphide deposit are located in the south margin of the Arabian-Nubian Shield, SW Yemen. The intrusions consist of du- nite, olivine-pyroxenite, lherzolite, hornblendite, gabbro and gabbronorite. The dunite and lherzolite are the main host rock for the Cu-Ni ores. The new data of the chemical compositions of the rocks have SiO2 (50% - 53.6% ), AI203 (0-32%) and MgO (4%-28%), and relatively low TiO2 (0-3.2%) and K2 0 + Na20 (0. 04% - 5.2% ). The geochemical characteristics indicate that the parental magma is high-magnesium tholeiitic. Sulfur had reached saturation and immiscible sulfides droplets segregated from silicate magmas before their emplacement.
文摘The determination of the geographical origin as well as the adulteration of natural products is a technical problem due to similar chemical composition between an adulterant and the original. It is assumed that tartaric acid comes from natural sources, however there is no specific regulation for this claim. This paper describes the use of isotope mass spectrometry associated with chemometrics to classify different samples of tartaric acid. The results showed that the variables δ^13C, δ^18O and δ^2H allowed the discrimination of tartaric acid samples by geographical origin and production method. By using a combination of chemometfic analysis it was possible to confirm a notoriousseparation of the samples. Thus, this is a promising method to be applied in the quality control and authenticity of tartaric acid.
基金supported by National Key Basic Research Program of China (Grant No. 2012CB416702)National Natural Science Foundation of China (Grant No. 41230315)China Geological Survey Program (Grant No. 1212011085407)
文摘The samples from the hidden Daqiling muscovite monzonite granite, which has recently been recognized within the Limu Sn-polymetallic ore field, have been analyzed for zircon U-Pb ages and whole rock geochemical and Nd-Hf isotopic compositions to discuss its genesis, source, and tectonic setting. LA-ICP-MS zircon U-Pb dating indicates that the granite crystallized in the late Indosinian(224.8±1.6 Ma). The granite is enriched in SiO2 and K2 O and low in CaO and Na2 O. It is strongly peraluminous with the A/CNK values of 1.09–1.20 and 1.4 vol%–2.7 vol% normal corundum. Chondrite-normalized REE patterns show slightly right-dipping shape with strongly negative Eu anomalies(δEu =0.08–0.17). All samples show enrichment of LILEs(Cs, Rb and K) and HFSEs(U, Pb, Ce and Hf), but have relatively low contents of Ba, Sr and Ti. The zircon saturation temperatures(Tzr) are from 711 to 740°C, which are slightly lower than the average value of typical S-type granite(764°C). The granite has negative εNd(t) and εHf(t) values, which change from ?9.1 to ?10.1 with the peak values of ?9.2 to ?9.0 and from ?3.7 to ?12.6 with the peak values of ?6 to ?5, respectively. The C DMT(Nd) and C DMT(Hf) values are 1.74–1.82 Ga with the peak values of 1.73–1.75 Ga and 1.49–2.04 Ga with the peak values of 1.5–1.6 Ga, respectively. These characteristics reveal that the source region of the granite is dominantly late Paleoproterozoic to early Mesoproterozoic crustal materials. Seven inherited magmatic zircons are dated at the age of 248.6±4.3 Ma, which suggests the existence of the early Indosinian granite in Limu area. These zircons have the εHf(t) values of ?6.7– ?2.3, similar to those of the Daqiling granite, implying the involvement of the early Indosinian granite during the formation of the Daqiling granite. Inherited zircon of 945±11 Ma has the εHf(t) and TDM(Hf) values of 8.7 and 1.14 Ga, respectively, compatible with those of the Neoproterozoic arc magmatic rocks in the eastern Jiangnan orogenic belt. Therefore we inferred that Neoproterozoic arc magma might have been involved in the formation of the Daqiling granite, and that the Neoproterozoic arc magma belt and continent-arc collision belt between the Yangtze and Cathaysia Blocks might have extended westsouthward to Limu region. It is proposed that the underplating of mantle materials triggered by crustal extension and thinning resulted in partial melting of crustal materials to form the Daqiling granite in the late Indosinian under post-collisional tectonic setting.
基金supported by National Natural Science Foundation of China (Grant Nos. 40634022, 40972132)State Key Laboratory for Mineral Deposits Research of Nanjing University (Grant No. 2008-I-01)
文摘This paper reports the systematic study on petrology, geochemistry, LA ICPMS zircons U-Pb dating, and in situ Hf isotope geology of the four plutons in the central-southern Jiangxi Province, an important part of the South China Block. In the outcrops, rocks are gradually changed from wall rock (slate or schist) to pluton (gneissic granite); some residual blocks of sandy rock occur in the margin of pluton, and the foliations of residual blocks are parallel to those of both wail rock and gneissic granite. The thin-section observations show that the four plutons contain peraluminous minerals such as muscovite and sillimanite. The flattened and elongated feldspar and quartz grains are often visible in the gneissic granite, parallel to direction of lineation, suggesting that the granitic rock were subjected to a strong ductile sheafing. Geochemically, the A/CNK values from 13 granitic samples are between 1.03 and 1.37 with an average of 1.16, indicating that the granites are of strongly peraluminous plutons. The REE compositions of the 13 samples are similar, showing higher EREE contents, with enrichment in LREEs, depletion in Eu and REE patterns with relative LREE-enrichment and negligible Eu anomalies. They show enrichment in Rb, Th, U and depletion in Ba, Sr, Nb, Ti, belonging to a low Ba-Sr type of granite. Thus, the four bodies should be derived from the same magmatic source. Zircons used as U-Pb dating mostly exhibit euhedral shape and high Th/U values from 0.52 to 1.54 with an average of 1.08, suggesting that most zircons are of magmatic genesis. The zircons from four plutons yielded rather similar 206pb/238U vs. 207Tpb/235U concordia ages: 436.1±5.7 Ma for the Tangwan granite, 440.6±4 Ma for the Jiekou gneissic granite, 435.9±6.2 Ma for the Dongbao gneissic granite, and 441.9±3.1 Ma for the Jinxi K-granite, respectively, corresponding to Silurian Llandovery. Several xenocrysts yielded U-Pb ages around 700 Ma, implying that a breakup event took place during Neoproterozoic in the South China Block. In situ Lu-Hf isotopic analysis shows that all εHf(t) values of zircons are negative and have two-stage Hf model ages (TDM2) from 1.4 to 3.6 Ga, indicating that the Silurian granitic magma came from the re- cycle of Meso-Paleoproterozoic basement and even partly Archean rocks, and had not been effected by mantle magma. Re- searches on regional geology suggest that an intracontinental tectono-magmatic event took place during the early Paleozoic in the study areas, which is characterized by folding and thrusting, leading to crustal shortening and thickening, up to 20 km thickness. The high geothermal temperature from thickening crust and accumulation of producing high-heat radioactive elements gradually softened crustal rocks and caused a partial melting, forming peraluminous granitic magma. Under the post-orogenic extensional and de-pressure condition, these granitic magma rose and was emplaced in the upper crust, leading to development of S-type plutons
基金supported by the National Natural Science Foundation of China (Grant Nos. 91014006, 90914005 & 41474073)
文摘From the 1960 s to 1970 s, North China has been hit by a series of large earthquakes. During the past half century,geophysicists have carried out numerous surveys of the crustal and upper mantle structure, and associated studies in North China.They have made significant progress on several key issues in the geosciences, such as the crustal and upper mantle structure and the seismogenic environment of strong earthquakes. Deep seismic profiling results indicate a complex tectonic setting in the strong earthquake areas of North China, where a listric normal fault and a low-angle detachment in the upper crust coexist with a high-angle deep fault passing through the lower crust to the Moho beneath the hypocenter. Seismic tomography images reveal that most of the large earthquakes occurred in the transition between the high-and low-velocity zones, and the Tangshan earthquake area is characterized by a low-velocity anomaly in the middle-lower crust. Comprehensive analysis of geophysical data identified that the deep seismogenic environment in the North China extensional tectonic region is generally characterized by a low-velocity anomalous belt beneath the hypocenter, inconsistency of the deep and shallow structures in the crust, a steep crustalal-scale fault,relative lower velocities in the uppermost mantle, and local Moho uplift, etc. This indicates that the lithospheric structure of North China has strong heterogeneities. Geologically, the North China region had been a stable craton named the North China Craton or in brief the NCC, containing crustal rocks as old as ~3.8 Ga. The present-day strong seismic activity and the lower velocity of the lower crust in the NCC are much different from typical stable cratons around the world. These findings provide significant evidence for the destruction of the NCC. Although deep seismic profiling and seismic tomography have greatly enhanced knowledge about the deep-seated structure and seismogenic environment, some fundamental issues still remain and require further work.
基金supported by National Basic Research Program of China (Grant No. 2005CB422101)
文摘Lithologically, two kinds of chert can be recognized in the Middle-Upper Permian from the Tieqiao section in Laibin area, Guangxi, i.e., calcic chert occurring mainly in the Maokou Formation and pure chert mainly in the Wujiaping Formation. Geochemical data show that both kinds of chert contain very low A1203 (0-0.23%) and TiO2 (0.001%-0.024%) and low ZREE (0.55-19.94 ppm, averaging 9.97 ppm), as well as high ratio of Fe2O3/TiO2 (17-443, averaging 111) and low ratio of A1203/(Al2O3+Fe203) (0-0.26, averaging 0.09). Given that the average value Ce anomalies in chert deposited in the ridge-proximal environment is about 0.29, and that in the pelagic environment is about 0.60, the low Ce anomalies in the Tieqiao chert (0.24-0.46, averaging 0.35) imply that they were deposited in an ocean basin with influence of submarine hydrothermal fluid and no input of terrigenous materials. The vertical variation of the silica abundance in strata (SAIS) in the Middle-Upper Permian strata, together with the Eu anomalies and the ratios of ∑REE/Fe, indicates a relationship between the hydrothermal activity and the Emeishan basalt eruption, and that submarine hydrothermal activity was stronger in the Upper Permian (the Wujiapingian Stage) than in the Middle Permian (the Maokou Stage).
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-Q08-3-4)the project from the State Key Laboratory for Mineral Deposits Research,Nanjing University(Grant No.15-09-08)
文摘High-Mg (Mg#〉45) andesites (HMA) within cratons attract great attention from geologists. Their origin remains strongly debated. In order to examine and provide direct evidence for previous assumptions about HMA's genesis inferred from petrolog- ical and geochemical investigations, we performed reaction experiments between tonalitic melt and mantle olivine on a six-anvil apparatus at high-temperature of 1250-1400℃ and high-pressure of 2.0-5.0 GPa. Our experiments in this work simulated the interaction between the tonalitic melt derived from partial melting of eclogitized lower crust foundering into the Earth's mantle and mantle peridotite. The experimental results show that the reacted melts have very similar variations in chemical compositions to the HMAs within the North China Craton. Therefore, this interaction is probably an important pro- cess to generate the HMAs within crations.