Traditional formation pressure prediction methods all are based on the formation undercompaction mechanism and the prediction results are obviously low when predicting abnormally high pressure caused by compressional ...Traditional formation pressure prediction methods all are based on the formation undercompaction mechanism and the prediction results are obviously low when predicting abnormally high pressure caused by compressional structure overpressure.To eliminate this problem,we propose a new formation pressure prediction method considering compressional structure overpressure as the dominant factor causing abnormally high pressure.First,we establish a model for predicting maximum principal stress,this virtual maximum principal stress is calculated by a double stress field analysis.Then we predict the formation pressure by fitting the maximum principal stress with formation pressure. The real maximum principal stress can be determined by caculating the sum of the virtual maximum principal stresses.Practical application to real data from the A1 and A2 wells in the A gas field shows that this new method has higher accuracy than the traditional equivalent depth method.展开更多
The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition f...The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition for predicting the water-resisting ability of the floor.We have used a high-precision microseismic monitoring technique to overcome the limited amount of data available from field measurements. The failure depth of a coal seam floor,especially an inclined coal seam floor,may be more accurately estimated by monitoring the continuous,dynamic failure of the floor.The monitoring results indicate the failure depth of the coal seam floor near the workface conveyance roadway(the lower crossheading) is deeper and that the failure range is wider here compared to the coal seam floor near the return airway(the upper crossheading).The results of micro-seismic monitoring show that the dangerous area for water-inrush from the coal seam floor may be identified.This provides an important field measurement that helps ensure safe and highly efficient mining of the inclined coal seam above the confined aquifer at the Taoyuan Coal Mine.展开更多
According to the special requirements of secondary mining of resources in gateway-and-pillar goal in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical s...According to the special requirements of secondary mining of resources in gateway-and-pillar goal in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical simulation and theoretical analysis are ccsed to investigate the compaction characteristics of cavities under stress as well as an appropriate mining height of the primary-mining layer based on dif- ferent mining widths and pillar widths. For Yangjian coal mine, the mining thickness of the first seam during back stoping from level floor is determined to be 3 m, which meets the relevant requirements. Gateway-and-pillar goaf of a single layer has a range of influence of 9 m vertically. If gateway-and-pillar goaf occurs both in 9-1 and 9-5 layers, the range is extended to within 11.2 m. When the mining width of a gateway is less than 2 m or larger than 5 m, the gateway-and-pillar goal in the upper layer of the primary-mining seam can be filled in and compacted after stoping. When the working face is 2 m away from the gateway and pillar before entering into it and after passing through it, the coal body under the gateway and pillar is subjected to relatively high stress. During mining of the upper layer, moreover, the working face should interlock the goaf in primary-mining layer for 20 m.展开更多
There is low formation pressure coefficient and high formation temperature in ludong-wucaiwan area. Gas cut and gas channeling happen seriously during oil and gas well cementing. The existing anti-migration additive h...There is low formation pressure coefficient and high formation temperature in ludong-wucaiwan area. Gas cut and gas channeling happen seriously during oil and gas well cementing. The existing anti-migration additive has only effects on single trait, so it is difficult to meet cementing requirement. According to this situation we could use latex slurry to anti-gas channeling. We have synthesised a set of anti-gas channeling lightweight temperature-resistant latex slurry and formed a new channeling preventing latex slurry through plenty of previous laboratory experiments. Finally the performance of latex slurry on temperature-resistant, anti-gas channeling and the anti-gas channeling of cement paste are studied. The experimental results show that this latex system has strong temperature-resistant and anti-gas channeling, which completely meet the requirement of cementing in this area.展开更多
Groundwater as an alternative source still does not contribute to the water supply in area of Parit Raja because of the limitation of water availability in the ground. This lacking of groundwater could be caused by th...Groundwater as an alternative source still does not contribute to the water supply in area of Parit Raja because of the limitation of water availability in the ground. This lacking of groundwater could be caused by the circumstance that the top layer of soil is dominated by compacted clay around 2 meters in which its permeability is small, so the water is difficult to infiltrate the ground. The recharge well technique was designed based on the flat area problems, layer of real condition, flow water table and low infiltration rate. Resistivity soundings were made at existing wells to assess the subsurface layers. Beside that, the past records on floods event, sub surface and surface studies were collected around study area as a preliminary studies. It was presented that the study area promised good prospects to increase the capability of groundwater and contribute to the drainage system by reducing the volume of rainfall runoff using the recharge well technique.展开更多
基金a grant from the National Key Technologies R & D Program of China during the 9th Five-Year Plan Period(Grant No.9911010102).
文摘Traditional formation pressure prediction methods all are based on the formation undercompaction mechanism and the prediction results are obviously low when predicting abnormally high pressure caused by compressional structure overpressure.To eliminate this problem,we propose a new formation pressure prediction method considering compressional structure overpressure as the dominant factor causing abnormally high pressure.First,we establish a model for predicting maximum principal stress,this virtual maximum principal stress is calculated by a double stress field analysis.Then we predict the formation pressure by fitting the maximum principal stress with formation pressure. The real maximum principal stress can be determined by caculating the sum of the virtual maximum principal stresses.Practical application to real data from the A1 and A2 wells in the A gas field shows that this new method has higher accuracy than the traditional equivalent depth method.
基金supported by the National Basic Research Program ofChina(No.2010CB202210)the National Natural Science Foundation of China(No.50874103)+1 种基金the Natural Science Foundation of Jiangsu Province(No.KB2008135)as well as by the Qinglan Project of Jiangsu Province
文摘The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition for predicting the water-resisting ability of the floor.We have used a high-precision microseismic monitoring technique to overcome the limited amount of data available from field measurements. The failure depth of a coal seam floor,especially an inclined coal seam floor,may be more accurately estimated by monitoring the continuous,dynamic failure of the floor.The monitoring results indicate the failure depth of the coal seam floor near the workface conveyance roadway(the lower crossheading) is deeper and that the failure range is wider here compared to the coal seam floor near the return airway(the upper crossheading).The results of micro-seismic monitoring show that the dangerous area for water-inrush from the coal seam floor may be identified.This provides an important field measurement that helps ensure safe and highly efficient mining of the inclined coal seam above the confined aquifer at the Taoyuan Coal Mine.
基金Financial support for this work was provided by the National High-Tech Research and Development Program of China (No. 2012AA062101)the Priority Academic Development Program of Jiangsu Higher Education Institutions (No. SZBF2011-6-B35)the Graduate Students Innovation Fund of Colleges and Universities in Jiangsu Province (No. CXZZ12_0950)
文摘According to the special requirements of secondary mining of resources in gateway-and-pillar goal in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical simulation and theoretical analysis are ccsed to investigate the compaction characteristics of cavities under stress as well as an appropriate mining height of the primary-mining layer based on dif- ferent mining widths and pillar widths. For Yangjian coal mine, the mining thickness of the first seam during back stoping from level floor is determined to be 3 m, which meets the relevant requirements. Gateway-and-pillar goaf of a single layer has a range of influence of 9 m vertically. If gateway-and-pillar goaf occurs both in 9-1 and 9-5 layers, the range is extended to within 11.2 m. When the mining width of a gateway is less than 2 m or larger than 5 m, the gateway-and-pillar goal in the upper layer of the primary-mining seam can be filled in and compacted after stoping. When the working face is 2 m away from the gateway and pillar before entering into it and after passing through it, the coal body under the gateway and pillar is subjected to relatively high stress. During mining of the upper layer, moreover, the working face should interlock the goaf in primary-mining layer for 20 m.
文摘There is low formation pressure coefficient and high formation temperature in ludong-wucaiwan area. Gas cut and gas channeling happen seriously during oil and gas well cementing. The existing anti-migration additive has only effects on single trait, so it is difficult to meet cementing requirement. According to this situation we could use latex slurry to anti-gas channeling. We have synthesised a set of anti-gas channeling lightweight temperature-resistant latex slurry and formed a new channeling preventing latex slurry through plenty of previous laboratory experiments. Finally the performance of latex slurry on temperature-resistant, anti-gas channeling and the anti-gas channeling of cement paste are studied. The experimental results show that this latex system has strong temperature-resistant and anti-gas channeling, which completely meet the requirement of cementing in this area.
文摘Groundwater as an alternative source still does not contribute to the water supply in area of Parit Raja because of the limitation of water availability in the ground. This lacking of groundwater could be caused by the circumstance that the top layer of soil is dominated by compacted clay around 2 meters in which its permeability is small, so the water is difficult to infiltrate the ground. The recharge well technique was designed based on the flat area problems, layer of real condition, flow water table and low infiltration rate. Resistivity soundings were made at existing wells to assess the subsurface layers. Beside that, the past records on floods event, sub surface and surface studies were collected around study area as a preliminary studies. It was presented that the study area promised good prospects to increase the capability of groundwater and contribute to the drainage system by reducing the volume of rainfall runoff using the recharge well technique.