To reduce the shielding effect of hardened layers on electrical resistivity tomography,a ratio method based on the distortion correction principle and the isolation coefficient is proposed.The effects of the resistivi...To reduce the shielding effect of hardened layers on electrical resistivity tomography,a ratio method based on the distortion correction principle and the isolation coefficient is proposed.The effects of the resistivity and thickness of hardened concrete layers on the detection of target objects are explored.Both numerical simulations and indoor tank tests indicate that when the ratio method is employed to correct the original collected data,the maximum allowable error for the isolation coefficient should not exceed 1%.Notably,when the ratio of hardened layer thickness to electrode spacing does not exceed 1,correction through this method significantly enhances the recognition capability of target objects.However,when the hardened layer thickness is greater than the electrode spacing by a factor of 2 or more,the ratio method cannot achieve satisfactory results.The case study of flood control engineering detection in the Zhangxi section of the Huangpen River in Dongzhi County demonstrates that the detection effect after correction by the ratio method is comparable to that for the adjacent unhardened pavement,and the influence of the hardened layer is obviously weakened,resulting in more reliable results.展开更多
We propose a new method for inverting source function of microseismic event induced in mining. The observed data from microseismic monitoring during mining are represented by a wave equation in a spherical coordinate ...We propose a new method for inverting source function of microseismic event induced in mining. The observed data from microseismic monitoring during mining are represented by a wave equation in a spherical coordinate system and then the data are transformed from the time-space domain to the time-slowness domain based on tomographic principle, from whichwe can obtain the signals related to the source in the time-slowness domain. Through analyzing the relationship between the signal located at the maximum energy and the source function, we derive the tomographic equations to compute the source function from the signals and to calculate the effective radiated energy based on the source function. Moreover, we fit the real amplitude spectrum of the source function computed from the observed data into the co-2 model based on the least squares principle and determine the zero-frequency level spectrum and the corner frequency, finally, the source rupture radius of the event is calculated and The synthetic and field examples demonstrate that the proposed tomographic inversion methods are reliable and efficient展开更多
A new inversion scheme is presented to obtain three-dimensional images of P-wave velocity(Vp) and P–S-wave velocity ratio(Vp/Vs) using P- and S-phase pairs, i.e., the same source–receiver pairs for the P- and S-...A new inversion scheme is presented to obtain three-dimensional images of P-wave velocity(Vp) and P–S-wave velocity ratio(Vp/Vs) using P- and S-phase pairs, i.e., the same source–receiver pairs for the P- and S-wave arrival-time data. The S-wave velocity(Vs) was separately inverted using the S-phase arrival times. The earthquake hypocenters were simultaneously relocated in the joint inversion. The method considers the Vp/Vs anomaly as a model parameter in the inversion. The proposed method thus provides a more robust calculation of the Vp/Vs anomaly than the conventional method of dividing Vp by Vs. The method also takes into account the ray path difference between P- and S-waves, and hence yields a less biased Vp–Vs ratio than the method of inverting S–P-wave data for Vp and Vp/Vs anomalies under the assumption of identical P and S ray paths. The proposed method was used to image the crust and upper mantle in northeastern(NE) Japan taking advantage of a large number of high-quality arrival times of P- and S-wave source–receiver pairs. The inverted structures suggest that the subducting slab of the Pacific plate is an inclined zone of high-Vp and Vs anomalies with low Vp/Vs perturbation. The mantle wedge is characterized by low-Vp, low-Vs, and high-Vp/Vs anomalies at shallow depths beneath active volcanoes. These features are also observed at greater depths in the back-arc region. Although these features have been previously reported, the Vp/Vs anomaly pattern obtained in this study shows much less scatter and is much better correlated with the seismic velocity perturbation patterns than previous studies. The proposed method can be used, in conjunction with velocity anomaly patterns, to quantify thermal processes associated with plate subduction.展开更多
Pre-stack depth migration velocity analysis is one of the key techniques influencing image quality. As for areas with a rugged surface and complex subsurface, conventional prestack depth migration velocity analysis co...Pre-stack depth migration velocity analysis is one of the key techniques influencing image quality. As for areas with a rugged surface and complex subsurface, conventional prestack depth migration velocity analysis corrects the rugged surface to a known datum or designed surface velocity model on which to perform migration and update the velocity. We propose a rugged surface tomographic velocity inversion method based on angle-domain common image gathers by which the velocity field can be updated directly from the rugged surface without static correction for pre-stack data and improve inversion precision and efficiency. First, we introduce a method to acquire angle-domain common image gathers (ADCIGs) in rugged surface areas and then perform rugged surface tornographic velocity inversion. Tests with model and field data prove the method to be correct and effective.展开更多
In the paper results of passive tomography calculations have been presented to assess rockburst hazard and locate high seismic activity zones in the vicinity of longwall 306 in Zabrze Bielszowice coal mine. The area o...In the paper results of passive tomography calculations have been presented to assess rockburst hazard and locate high seismic activity zones in the vicinity of longwall 306 in Zabrze Bielszowice coal mine. The area of study was 1000 m in X direction by 900 m in Y direction. The zones of high values of P-wave propagation velocity have been found to correlate with the distribution of large seismic tremors.展开更多
The Haicheng earthquake (Ms 7.3) occurred in Liaoning Province (39°N-43°N, 120°E-126°E ), China on February 4, 1975. The mortality rate was only 0.02% owing to the first timely and accurate pre...The Haicheng earthquake (Ms 7.3) occurred in Liaoning Province (39°N-43°N, 120°E-126°E ), China on February 4, 1975. The mortality rate was only 0.02% owing to the first timely and accurate prediction, although the area affected by the earthquake was 9200 km^2 and covered cities with a population density of 1000 p/km^2. In this study, the double- difference (DD) tomography method was used to obtain high-resolution three-dimensional (3D) P- and S-wave velocity (Vp and Vs) structures and Vp/Vs as well as the earthquake locations. Tomography results suggest that velocity structure at shallow depth coincides well with topography and sediment thickness. The earthquake locations form a northwest-striking zone associated with the Jinzhou(JZ) Fault and a northeast-striking zone associated with the Haichenghe-Dayanghe (HD) Fault, and suggest that the JZ Fault consists of three faults and the Ms 7.3 Haicheng earthquake originated at the intersection of the JZ and the Faults. Low- velocity zones (LVZs) with low Vp/Vs are observed at 15-20 km depth beneath the Haicheng (HC) region. We interpret the LVZs in the middle crust as regions of fluids, suggesting rock dehydration at high temperatures. The LVZs and low Vp/Vs in the upper crust are attributed to groundwater-filled cracks and pores. We believe that large crustal earthquakes in this area are caused by the combination of faulting and fluid movement in the middle crust.展开更多
Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion ...Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.展开更多
In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal par...In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal parameters and three-dimensional(3 D)body-wave high-resolution velocity structures at depths of 0–30 km were retrieved by double-difference tomography.Results show that there is a good correspondence between the spatial distribution of the relocated earthquakes and velocity structures,which were concentrated mainly in the high-velocity-anomaly region or edge of high-velocity region.Velocity structure of P-and S-waves in the Yibin area clearly shows lateral inhomogeneity.The distribution characteristics of the P-and S-waves near the surface are closely related to the geomorphology and geologic structure.The low-velocity anomaly appears at the depth of 15–25 km,which is affected by the lower crust current.The Junlian–Gongxian and Gongxian–Changning earthquake areas,which are the two most earthquake-prone areas in the Yibin region,clearly differ in earthquake distribution and tectonic characteristics.We analyzed the structural characteristics of the Junlian–Gongxian and Gongxian–Changning earthquake areas on the basis of the 3 D bodywave velocity structures in the Yibin region.We found that although most seismicity in the Yibin area is caused by fluid injection,the spatial position of seismicity is controlled by the velocity structures of the middle and upper crust and local geologic structure.Fine-scale 3 D velocity structures in the Yibin area provide important local reference information for further understanding the crustal medium,seismogenic structure,and seismicity.展开更多
Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet) Plateau, the three dimensional (3-D) seismic velocity structures in Qinghai-Xizang Plateau were...Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet) Plateau, the three dimensional (3-D) seismic velocity structures in Qinghai-Xizang Plateau were obtained by using the regional body wave tomography and surface wave tomography. The results from these two tomography methods have similar characteristics for P- and S-wave velocity structures in crust and upper mantle. They show that there are remarkable low velocity zones in the upper crust of Lhasa block in the southern Qinghai-Xizang Plateau and the lower crust and upper mantle of Qiangtang block in the northern Qinghai-Xizang Plateau. These phenomena may be related to the different steps of collision process in southern and northern Qinghai-Xizang Plateau.展开更多
In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating t...In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating the geologically horizontal strata. We carried out physical modeling on the deformation and failure processes of roadways subjected to a plane loading scheme. Our laboratory tests were based on work which incorporated infrared (IR) detection, IR radiation temperature (IRT) statistics, image feature extraction and 2D Fourier transformation, from resulting thermographies. The IRT characterizes the mechanical responses from the roadway after loading with two stages, i.e., IRT evolving at higher levels corresponded to shallow mining (≤500 m) during which the roadway deformed gradually (referred to as the "steady deformation stage"); IRT evolving in a quasi-cyclical manner with multiple peaks corresponded to deep mining (800–2600 m), in which the failure mode for the roadway are dominated by breakage and collapse (called the "unsteady deformation stage"). The IR images and 2D Fourier spectra illustrate detailed information in terms of initiation, nucleation and coalescence of the damage to rock masses and the eventual failure of roadways subject to external loading.展开更多
基金National Key Research and Development Program of China(No.2021YFC3000103).
文摘To reduce the shielding effect of hardened layers on electrical resistivity tomography,a ratio method based on the distortion correction principle and the isolation coefficient is proposed.The effects of the resistivity and thickness of hardened concrete layers on the detection of target objects are explored.Both numerical simulations and indoor tank tests indicate that when the ratio method is employed to correct the original collected data,the maximum allowable error for the isolation coefficient should not exceed 1%.Notably,when the ratio of hardened layer thickness to electrode spacing does not exceed 1,correction through this method significantly enhances the recognition capability of target objects.However,when the hardened layer thickness is greater than the electrode spacing by a factor of 2 or more,the ratio method cannot achieve satisfactory results.The case study of flood control engineering detection in the Zhangxi section of the Huangpen River in Dongzhi County demonstrates that the detection effect after correction by the ratio method is comparable to that for the adjacent unhardened pavement,and the influence of the hardened layer is obviously weakened,resulting in more reliable results.
基金supported jointly by projects of the National Natural Science Fund Project(No.51174016)the National Key Basic Research and Development Plan 973(No.2010CB226803)
文摘We propose a new method for inverting source function of microseismic event induced in mining. The observed data from microseismic monitoring during mining are represented by a wave equation in a spherical coordinate system and then the data are transformed from the time-space domain to the time-slowness domain based on tomographic principle, from whichwe can obtain the signals related to the source in the time-slowness domain. Through analyzing the relationship between the signal located at the maximum energy and the source function, we derive the tomographic equations to compute the source function from the signals and to calculate the effective radiated energy based on the source function. Moreover, we fit the real amplitude spectrum of the source function computed from the observed data into the co-2 model based on the least squares principle and determine the zero-frequency level spectrum and the corner frequency, finally, the source rupture radius of the event is calculated and The synthetic and field examples demonstrate that the proposed tomographic inversion methods are reliable and efficient
基金sponsored by the One Hundred Person Project of the Chinese Academy of Sciences(No.17314059)the Natural ScienceFoundation of China(No.41372229)+1 种基金the Sichuan Province Outstanding Youth Foundation(Nos.2010JQ0033,KYTD201002)theOpening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection as well as the Research Foundation fothe Doctoral Program of Higher Education of China(Nos.20115122110007,20125122110002)
文摘A new inversion scheme is presented to obtain three-dimensional images of P-wave velocity(Vp) and P–S-wave velocity ratio(Vp/Vs) using P- and S-phase pairs, i.e., the same source–receiver pairs for the P- and S-wave arrival-time data. The S-wave velocity(Vs) was separately inverted using the S-phase arrival times. The earthquake hypocenters were simultaneously relocated in the joint inversion. The method considers the Vp/Vs anomaly as a model parameter in the inversion. The proposed method thus provides a more robust calculation of the Vp/Vs anomaly than the conventional method of dividing Vp by Vs. The method also takes into account the ray path difference between P- and S-waves, and hence yields a less biased Vp–Vs ratio than the method of inverting S–P-wave data for Vp and Vp/Vs anomalies under the assumption of identical P and S ray paths. The proposed method was used to image the crust and upper mantle in northeastern(NE) Japan taking advantage of a large number of high-quality arrival times of P- and S-wave source–receiver pairs. The inverted structures suggest that the subducting slab of the Pacific plate is an inclined zone of high-Vp and Vs anomalies with low Vp/Vs perturbation. The mantle wedge is characterized by low-Vp, low-Vs, and high-Vp/Vs anomalies at shallow depths beneath active volcanoes. These features are also observed at greater depths in the back-arc region. Although these features have been previously reported, the Vp/Vs anomaly pattern obtained in this study shows much less scatter and is much better correlated with the seismic velocity perturbation patterns than previous studies. The proposed method can be used, in conjunction with velocity anomaly patterns, to quantify thermal processes associated with plate subduction.
基金sponsored by the National 863 Project(No.2009AA06Z206)the Self-governed Innovative Project of China University of Petroleum(No.11CX04010A)the Doctoral Fund of National Ministry of Education(No. 20110133120001)
文摘Pre-stack depth migration velocity analysis is one of the key techniques influencing image quality. As for areas with a rugged surface and complex subsurface, conventional prestack depth migration velocity analysis corrects the rugged surface to a known datum or designed surface velocity model on which to perform migration and update the velocity. We propose a rugged surface tomographic velocity inversion method based on angle-domain common image gathers by which the velocity field can be updated directly from the rugged surface without static correction for pre-stack data and improve inversion precision and efficiency. First, we introduce a method to acquire angle-domain common image gathers (ADCIGs) in rugged surface areas and then perform rugged surface tornographic velocity inversion. Tests with model and field data prove the method to be correct and effective.
文摘In the paper results of passive tomography calculations have been presented to assess rockburst hazard and locate high seismic activity zones in the vicinity of longwall 306 in Zabrze Bielszowice coal mine. The area of study was 1000 m in X direction by 900 m in Y direction. The zones of high values of P-wave propagation velocity have been found to correlate with the distribution of large seismic tremors.
基金supported by the National Natural Science Foundation of China(Grants Nos.41430322 and 41474030)the National Key Research and Development Project of China(Grants No.2016YFC0600301)
文摘The Haicheng earthquake (Ms 7.3) occurred in Liaoning Province (39°N-43°N, 120°E-126°E ), China on February 4, 1975. The mortality rate was only 0.02% owing to the first timely and accurate prediction, although the area affected by the earthquake was 9200 km^2 and covered cities with a population density of 1000 p/km^2. In this study, the double- difference (DD) tomography method was used to obtain high-resolution three-dimensional (3D) P- and S-wave velocity (Vp and Vs) structures and Vp/Vs as well as the earthquake locations. Tomography results suggest that velocity structure at shallow depth coincides well with topography and sediment thickness. The earthquake locations form a northwest-striking zone associated with the Jinzhou(JZ) Fault and a northeast-striking zone associated with the Haichenghe-Dayanghe (HD) Fault, and suggest that the JZ Fault consists of three faults and the Ms 7.3 Haicheng earthquake originated at the intersection of the JZ and the Faults. Low- velocity zones (LVZs) with low Vp/Vs are observed at 15-20 km depth beneath the Haicheng (HC) region. We interpret the LVZs in the middle crust as regions of fluids, suggesting rock dehydration at high temperatures. The LVZs and low Vp/Vs in the upper crust are attributed to groundwater-filled cracks and pores. We believe that large crustal earthquakes in this area are caused by the combination of faulting and fluid movement in the middle crust.
文摘Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.
基金supported by the Research Project of Tianjin Earthquake Agency(No.yb201901)Seismic Regime Tracking Project of CEA(No.2019010127)Combination Project with Monitoring,Prediction and Scientific Research of Earthquake Technology,CEA(No.3JH-201901006)
文摘In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal parameters and three-dimensional(3 D)body-wave high-resolution velocity structures at depths of 0–30 km were retrieved by double-difference tomography.Results show that there is a good correspondence between the spatial distribution of the relocated earthquakes and velocity structures,which were concentrated mainly in the high-velocity-anomaly region or edge of high-velocity region.Velocity structure of P-and S-waves in the Yibin area clearly shows lateral inhomogeneity.The distribution characteristics of the P-and S-waves near the surface are closely related to the geomorphology and geologic structure.The low-velocity anomaly appears at the depth of 15–25 km,which is affected by the lower crust current.The Junlian–Gongxian and Gongxian–Changning earthquake areas,which are the two most earthquake-prone areas in the Yibin region,clearly differ in earthquake distribution and tectonic characteristics.We analyzed the structural characteristics of the Junlian–Gongxian and Gongxian–Changning earthquake areas on the basis of the 3 D bodywave velocity structures in the Yibin region.We found that although most seismicity in the Yibin area is caused by fluid injection,the spatial position of seismicity is controlled by the velocity structures of the middle and upper crust and local geologic structure.Fine-scale 3 D velocity structures in the Yibin area provide important local reference information for further understanding the crustal medium,seismogenic structure,and seismicity.
文摘Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet) Plateau, the three dimensional (3-D) seismic velocity structures in Qinghai-Xizang Plateau were obtained by using the regional body wave tomography and surface wave tomography. The results from these two tomography methods have similar characteristics for P- and S-wave velocity structures in crust and upper mantle. They show that there are remarkable low velocity zones in the upper crust of Lhasa block in the southern Qinghai-Xizang Plateau and the lower crust and upper mantle of Qiangtang block in the northern Qinghai-Xizang Plateau. These phenomena may be related to the different steps of collision process in southern and northern Qinghai-Xizang Plateau.
基金Projects 2006CB202200 supported by the Special Funds for the Major State Basic Research ProjectIRT0656 by the Innovative Team Development Project of the State Educational Ministry of China
文摘In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating the geologically horizontal strata. We carried out physical modeling on the deformation and failure processes of roadways subjected to a plane loading scheme. Our laboratory tests were based on work which incorporated infrared (IR) detection, IR radiation temperature (IRT) statistics, image feature extraction and 2D Fourier transformation, from resulting thermographies. The IRT characterizes the mechanical responses from the roadway after loading with two stages, i.e., IRT evolving at higher levels corresponded to shallow mining (≤500 m) during which the roadway deformed gradually (referred to as the "steady deformation stage"); IRT evolving in a quasi-cyclical manner with multiple peaks corresponded to deep mining (800–2600 m), in which the failure mode for the roadway are dominated by breakage and collapse (called the "unsteady deformation stage"). The IR images and 2D Fourier spectra illustrate detailed information in terms of initiation, nucleation and coalescence of the damage to rock masses and the eventual failure of roadways subject to external loading.