In unconventional reservoirs, small faults allow the flow ofoil and gas as well as act as obstacles to exploration; for, (1) fracturing facilitates fluid migration, (2) reservoir flooding, and (3) triggering of ...In unconventional reservoirs, small faults allow the flow ofoil and gas as well as act as obstacles to exploration; for, (1) fracturing facilitates fluid migration, (2) reservoir flooding, and (3) triggering of small earthquakes. These small faults are not generally detected because of the low seismic resolution. However, such small faults are very active and release sufficient energy to initiate a large number of microseismic events (MEs) during hydraulic fracturing. In this study, we identified microfractures (MF) from hydraulic fracturing and natural small faults based on microseismicity characteristics, such as the time-space distribution, source mechanism, magnitude, amplitude, and frequency. First, I identified the mechanism of small faults and MF by reservoir stress analysis and calibrated the ME based on the microseismic magnitude. The dynamic characteristics (frequency and amplitude) of MEs triggered by natural faults and MF were analyzed; moreover, the geometry and activity types of natural fault and MF were grouped according to the source mechanism. Finally, the differences among time-space distribution, magnitude, source mechanism, amplitude, and frequency were used to differentiate natural faults and manmade fractures.展开更多
Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground defo...Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground deformation are not fully understood. In this work, six centrifuge tests are reported to investigate the influence of pre-existing fracture on ground deformation induced by normal faulting in sand, clay and nine-layered soil with interbedded sand and clay layers. Shear box tests were conducted to develop a filter paper technique, which was adopted in soil model preparation to simulate the effects of pre-existing fracture in centrifuge tests. Centrifuge test results show that ground deformation mechanism in clay, sand and nine-layered soil strata is classified as a stationary zone, a shearing zone and a rigid body zone. Inclination of the strain localization is governed by the dilatancy of soil material. Moreover, the pre-existing fracture provides a preferential path for ground deformation and results in a scarp at the ground surface in sand. On the contrary, fault ruptures are observed at the ground surface in clay and nine-layered soil strata.展开更多
Static effort of rock mass very rarely causes of rock burst in polish coal mines. Rock bursts with source in the seismic tremor within the roof rock layers are prevailing. A seismic tremor is an effect of rupture or s...Static effort of rock mass very rarely causes of rock burst in polish coal mines. Rock bursts with source in the seismic tremor within the roof rock layers are prevailing. A seismic tremor is an effect of rupture or sliding in roof layers above the exploited panel in coal seam, sometime in a distance from actual exploitation. Sliding, as a rule occurs in fault zone and tremors in it are expected, but monolithic layer rupture is very hard to predict. In a past few years a practice of analyzing state of deformation in high energy seismic tremors zones has been employed. It let gathering experience thanks to witch determination of dangerous shape of reformatted roof is possible. In the paper some typical forms of roof rocks deformations leading to seismic tremor occurrence will be presented. In general these are various types of multidirectional rock layers bending. Real examples of seismic events and rock bursts will be shown.展开更多
Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished direct...Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished directly from seismic profile of the complex structures is still an unanswered problem. Based on the compressional structural geometry and kinematics theories as well as the structural interpretation from seismic data, a set of techniques is established for the identification of potential faults and fractures in compressional structures. Firstly, three-dimensional(3D) patterns and characteristics of the faults directly interpreted from seismic profile were illustrated by 3D structural model. Then, the unfolding index maps, the principal structural curvature maps, and tectonic stress field maps were obtained from structural restoration. Moreover, potential faults and fractures in compressional structures were quantitatively identified relying on comprehensive analysis of these three maps. Successful identification of the potential faults and fractures in Mishrif limestone formation and in Asmari dolomite formation of Buzurgan anticline in Iraq demonstrates the applicability and reliability of these techniques.展开更多
Active velocity tomography was used to determine the stress state and rock burst hazards in a deep coal mine. The deepest longwall face, number 3207 in the Xingcun colliery, was the location of the field trials. The p...Active velocity tomography was used to determine the stress state and rock burst hazards in a deep coal mine. The deepest longwall face, number 3207 in the Xingcun colliery, was the location of the field trials. The positive correlation between stress and seismic velocity was used to link the velocity data with stratum stresses. A GeoPen SE2404NT data acquisition system was used to collect seismic data from 300 g explosive charges fired by instantaneous electric detonator and located in the tail entry. The geophones were installed on the rock bolts in the head entry of LW3207. Velocity inversion shows an inhomogeneous distribution of stress in the longvvall face that could not be obtained from theory or numerical simulations. Three abnormally high P-wave velocity regions were identified that were located on the corners of the two roadways and at the face end near the rail entry side. The maximum velocity gradient is located at the open cut off near the rail entry and is the area most dangerous for rock burst. Mining-induced tremors recorded by a micro-seismic monitoring system demonstrated that the position of energy release during mining coincides with the high velocity gradient area. This technology aids technicians in the coal mine as they design measures to weaken or eliminate potential danger during subsequent mining.展开更多
Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow...Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow Sea basin are quantitatively studied. The results show that the tectonic evolution of the north depression of the south Yellow Sea basin since late Cretaceous can be divided into a rifting phase (late Cretaceous to Paleogene) and a post-rifting phase (Neogene to Quaternary). The rifting phase can be further subdivided into an initial rifting stage (late Cretaceous), an intensive rifting stage (Paleocene), a rifting termination stage (Eocene), and an inversion-uplifting stage (Oligocene). Together, this division shows the characteristics of an episodic-evolved intracontinental rift-depression basin. The deformation of the north depression of the south Yellow Sea basin since late Cretaceous was mainly fault-related. The horizontal extension and tectonic subsidence were controlled by the activity of faults. The differential evolution of faults also caused variations in local uplift/subsidence movements and the regional heterogeneity in extension. The late Cretaceous initial rifting of the north depression of the south Yellow Sea basin is related to the Pacific-Eurasia convergence. From the Paleocene intensive rifting stage to present, the Pacific-Eurasia convergence and India-Eurasia convergence have played important roles in the evolution of this region.展开更多
The opinions of two papers carried in the journal "Seismology and Geology" are discussed in the paper.One is that the Tangshan fault is a high-angle,west-dipping and thrust with strike-slip fault.The other i...The opinions of two papers carried in the journal "Seismology and Geology" are discussed in the paper.One is that the Tangshan fault is a high-angle,west-dipping and thrust with strike-slip fault.The other is that the Fuzhuang-Xihe fault distributed on the east side of Tangshan city is the seismogenic fault that caused the Tangshan earthquake.For the former opinion,it needs to explain the relationship between the active style of the thrust Tangshan fault and the formation genesis of a Quaternary depression along the west side of Tangshan city.For the latter opinion,if the Fuzhuang-Xihe fault is the seismogenic fault of the Tangshan earthquake,it needs to explain the genesis relationship between this west-dip slip fault zone and the strike-slip surface fissure zone that extends through Tangshan city.And it needs more evidence exclude the possibility that the surface rupture belongs to the rupturing of a secondary structure.This paper suggests doing more work on the active fault that controls the Caobo Quaternary depression.展开更多
Line structures such as pipelines that cross active faults should be designed to retain leak-tightness if the design displacement (Ddesign) occurs. Principal approaches to the Ddesign and rupture kinematics assessment...Line structures such as pipelines that cross active faults should be designed to retain leak-tightness if the design displacement (Ddesign) occurs. Principal approaches to the Ddesign and rupture kinematics assessment are described. They are based on relationships between earthquake magnitude, rupture length and displacement, and on the detailed field data on a specific fault that crosses the pipeline route. Since the future offset at the crossing may exceed the design value, the probability of a displacement occurrence where the safety of the structure can not be ensured should be estimated. Assessment method on such event probability is described and exemplified through active fault studies carried out at several pipeline projects in Russia.展开更多
Based on the analysises of regional structural setting, basin formation and deformation, this paper demonstrates that the Xianfeng basin has been formed and inverted under the strike-slip regime. The article is a part...Based on the analysises of regional structural setting, basin formation and deformation, this paper demonstrates that the Xianfeng basin has been formed and inverted under the strike-slip regime. The article is a partial result of the whole research.展开更多
The Tianjin fault includes South Tianjin fault and North Tianjin fault. Based on the results of artificial seismic exploration,four borehole profiles were laid out respectively west of Jinghai county town,Chaomidian v...The Tianjin fault includes South Tianjin fault and North Tianjin fault. Based on the results of artificial seismic exploration,four borehole profiles were laid out respectively west of Jinghai county town,Chaomidian village of Xiqing district,Xiaonanhe village of Xiqing district and Zhutoudian village of Ninghe county,to implement the exploration of these faults. Through identification of microfossils,the locations of marine beds in boreholes were obtained in this work,and through stratigraphic dating,the ages of the first,second and third marine beds were determined. Through strata correlation with the marine beds as key marker beds and integrating with the test results of paleo geomagnetism of boreholes BZ2 and TN3,the activity in the North and South Tianjin faults was analyzed and studied. The results indicate that there is no evidence of movement of the South Tianjin fault since the Late Pleistocene,but may have had weak activity before the Middle Pleistocene. No evidence of activity in the North Tianjin fault was found since the Late Pleistocene either,but might have been active in the early stage of the Early Pleistocene. These show that the activity of the South Tianjin fault is stronger than that of the North Tianjin fault. At the same time,we find that the second,third and fourth marine beds are lacking to some extent in different areas. So,before they are used in strata correlation, the age of marine beds must be determined,otherwise the results of strata correlation may lead to errors. For the second marine bed,where there has been dispute about its age,we consider the age to be about 70ka.展开更多
The results from interpretation of the aerophotos and in-situ seismogeological researches show that there are some obvious late-Quaternary activities along the Moxi-Mianning segment of the Xianshuihe-Anninghe fault zo...The results from interpretation of the aerophotos and in-situ seismogeological researches show that there are some obvious late-Quaternary activities along the Moxi-Mianning segment of the Xianshuihe-Anninghe fault zone, with the characteristics of sinistral-slip movement accompanied by some significant vertical slip components. Since late-Quaternary, the average horizontal slip rate of the segment at the south of Moxi along the Xianshuihe fault is 6.0~9.9mm/a and 4.7~5.3mm/a along the segment at the north of Mianning of the Anninghe fault. The results from the investigation of coseismic dislocation and ground rupture show that the ground rupture caused by 1876 Kangding-Luding earthquake with M 7 3/ 4 can extend to the south of Tianwan. The segment at the north of Mianning of the Anninghe fault has a background for producing M7.5 earthquake and the geological record of the last strong earthquake must be the proofs of the 1327 earthquake with M>6.0 with poor historical records.展开更多
Deep and shallow tectonic data in Shenyang and its relationship with seismic activity shows that the NE trending faults developed on the surface control the formation and development of the fault-uplift and fault-depr...Deep and shallow tectonic data in Shenyang and its relationship with seismic activity shows that the NE trending faults developed on the surface control the formation and development of the fault-uplift and fault-depression. The uplift and depression of the bedrock at a depth of 7km underground are'consistent with the surface structure. 12 planar listric normal faults have developed above a depth of 18km -20km and two deep faults have developed in the lower crust. Because of the deep incision and new activities, the surface Wanggangpu-Xinehengzi fault and Yongle-Qingshuitai fault, which correspond to the deep F3 fault and F6 fault, might be related to seismic activity in Shenyang.展开更多
The East Kunlun active fault is an important NWW-trending boundary fault on the northeastern margin of the Qinghai-Xizang (Tibet) Plateau. The Maqu fault is the easternmost segment of the East Kunlun active fault. Bas...The East Kunlun active fault is an important NWW-trending boundary fault on the northeastern margin of the Qinghai-Xizang (Tibet) Plateau. The Maqu fault is the easternmost segment of the East Kunlun active fault. Based on three trenches, four Holocene palaeo-earthquake events are identified along the Maqu fault. The latest palaeo-earthquake event is (1730±50) ~ (1802±52) a BP, the second is (3736±57) ~ (4641±60) a BP, the third is (8590±70) a BP, and the earliest is (12200±1700) ka BP. The time of the first and second palaeo-earthquake events is more reliable than that of the third and last ones. As a result, the recurrence interval of the palaeo-earthquakes on the easternmost segment of the East Kunlun active fault is approximately 2400 a, and the palaeo-earthquake elapsed time is (1730±50) ~ (1802±52) a BP.展开更多
The M8.0 Wenchuan earthquake occurred on the Longmenshan fault zone. Based on field investigation of the surface rupture and focal mechanism study of the aftershocks, we discuss the geological relationship of the main...The M8.0 Wenchuan earthquake occurred on the Longmenshan fault zone. Based on field investigation of the surface rupture and focal mechanism study of the aftershocks, we discuss the geological relationship of the main, secondary and triggered ruptures. The main rupture is about 200km long and can be divided into the south part and the north part. The south part consists of two parallel fault zones characterized by reverse faulting, with several parallel secondary ruptures on the hanging wall of the main fault, and the north part is a single main fault zone characterized by lateral strike-slip and reverse faulting. Compared to a 300km long aftershock distribution, the surface rupture only occupies 200km, and the remaining lOOkm on the northeast of the main rupture was triggered by aftershocks. Study on the ruptures of this earthquake will be useful for studying the earthquake risk evolution on the Longmenshan fault system.展开更多
基金supported by the National Key Research and Development Project of China(No.2016ZX05023-004)
文摘In unconventional reservoirs, small faults allow the flow ofoil and gas as well as act as obstacles to exploration; for, (1) fracturing facilitates fluid migration, (2) reservoir flooding, and (3) triggering of small earthquakes. These small faults are not generally detected because of the low seismic resolution. However, such small faults are very active and release sufficient energy to initiate a large number of microseismic events (MEs) during hydraulic fracturing. In this study, we identified microfractures (MF) from hydraulic fracturing and natural small faults based on microseismicity characteristics, such as the time-space distribution, source mechanism, magnitude, amplitude, and frequency. First, I identified the mechanism of small faults and MF by reservoir stress analysis and calibrated the ME based on the microseismic magnitude. The dynamic characteristics (frequency and amplitude) of MEs triggered by natural faults and MF were analyzed; moreover, the geometry and activity types of natural fault and MF were grouped according to the source mechanism. Finally, the differences among time-space distribution, magnitude, source mechanism, amplitude, and frequency were used to differentiate natural faults and manmade fractures.
基金Project supported by the Earthquake Administration of Beijing Municipality and the National Development and Reform Commission of ChinaProject(IRT1125) supported by the program for Changjiang Scholars and Innovative Research Team in University, China
文摘Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground deformation are not fully understood. In this work, six centrifuge tests are reported to investigate the influence of pre-existing fracture on ground deformation induced by normal faulting in sand, clay and nine-layered soil with interbedded sand and clay layers. Shear box tests were conducted to develop a filter paper technique, which was adopted in soil model preparation to simulate the effects of pre-existing fracture in centrifuge tests. Centrifuge test results show that ground deformation mechanism in clay, sand and nine-layered soil strata is classified as a stationary zone, a shearing zone and a rigid body zone. Inclination of the strain localization is governed by the dilatancy of soil material. Moreover, the pre-existing fracture provides a preferential path for ground deformation and results in a scarp at the ground surface in sand. On the contrary, fault ruptures are observed at the ground surface in clay and nine-layered soil strata.
文摘Static effort of rock mass very rarely causes of rock burst in polish coal mines. Rock bursts with source in the seismic tremor within the roof rock layers are prevailing. A seismic tremor is an effect of rupture or sliding in roof layers above the exploited panel in coal seam, sometime in a distance from actual exploitation. Sliding, as a rule occurs in fault zone and tremors in it are expected, but monolithic layer rupture is very hard to predict. In a past few years a practice of analyzing state of deformation in high energy seismic tremors zones has been employed. It let gathering experience thanks to witch determination of dangerous shape of reformatted roof is possible. In the paper some typical forms of roof rocks deformations leading to seismic tremor occurrence will be presented. In general these are various types of multidirectional rock layers bending. Real examples of seismic events and rock bursts will be shown.
基金Project(2014CB239205)supported by the National Basic Research Program of ChinaProject(20011ZX05030-005-003)supported by the National Science and Technology Major Project of China
文摘Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished directly from seismic profile of the complex structures is still an unanswered problem. Based on the compressional structural geometry and kinematics theories as well as the structural interpretation from seismic data, a set of techniques is established for the identification of potential faults and fractures in compressional structures. Firstly, three-dimensional(3D) patterns and characteristics of the faults directly interpreted from seismic profile were illustrated by 3D structural model. Then, the unfolding index maps, the principal structural curvature maps, and tectonic stress field maps were obtained from structural restoration. Moreover, potential faults and fractures in compressional structures were quantitatively identified relying on comprehensive analysis of these three maps. Successful identification of the potential faults and fractures in Mishrif limestone formation and in Asmari dolomite formation of Buzurgan anticline in Iraq demonstrates the applicability and reliability of these techniques.
基金support for this work was provided by the National Basic Research Program of China (No. 2010CB226805)the National Natural Science Foundation of China (Nos. 50474068 and50490273)+1 种基金the Independent Foundation of State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM10X05)the Open Foundation of State Key Laboratory of Coal Resources and Mine Safety (No. 10KF05)
文摘Active velocity tomography was used to determine the stress state and rock burst hazards in a deep coal mine. The deepest longwall face, number 3207 in the Xingcun colliery, was the location of the field trials. The positive correlation between stress and seismic velocity was used to link the velocity data with stratum stresses. A GeoPen SE2404NT data acquisition system was used to collect seismic data from 300 g explosive charges fired by instantaneous electric detonator and located in the tail entry. The geophones were installed on the rock bolts in the head entry of LW3207. Velocity inversion shows an inhomogeneous distribution of stress in the longvvall face that could not be obtained from theory or numerical simulations. Three abnormally high P-wave velocity regions were identified that were located on the corners of the two roadways and at the face end near the rail entry side. The maximum velocity gradient is located at the open cut off near the rail entry and is the area most dangerous for rock burst. Mining-induced tremors recorded by a micro-seismic monitoring system demonstrated that the position of energy release during mining coincides with the high velocity gradient area. This technology aids technicians in the coal mine as they design measures to weaken or eliminate potential danger during subsequent mining.
文摘Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow Sea basin are quantitatively studied. The results show that the tectonic evolution of the north depression of the south Yellow Sea basin since late Cretaceous can be divided into a rifting phase (late Cretaceous to Paleogene) and a post-rifting phase (Neogene to Quaternary). The rifting phase can be further subdivided into an initial rifting stage (late Cretaceous), an intensive rifting stage (Paleocene), a rifting termination stage (Eocene), and an inversion-uplifting stage (Oligocene). Together, this division shows the characteristics of an episodic-evolved intracontinental rift-depression basin. The deformation of the north depression of the south Yellow Sea basin since late Cretaceous was mainly fault-related. The horizontal extension and tectonic subsidence were controlled by the activity of faults. The differential evolution of faults also caused variations in local uplift/subsidence movements and the regional heterogeneity in extension. The late Cretaceous initial rifting of the north depression of the south Yellow Sea basin is related to the Pacific-Eurasia convergence. From the Paleocene intensive rifting stage to present, the Pacific-Eurasia convergence and India-Eurasia convergence have played important roles in the evolution of this region.
文摘The opinions of two papers carried in the journal "Seismology and Geology" are discussed in the paper.One is that the Tangshan fault is a high-angle,west-dipping and thrust with strike-slip fault.The other is that the Fuzhuang-Xihe fault distributed on the east side of Tangshan city is the seismogenic fault that caused the Tangshan earthquake.For the former opinion,it needs to explain the relationship between the active style of the thrust Tangshan fault and the formation genesis of a Quaternary depression along the west side of Tangshan city.For the latter opinion,if the Fuzhuang-Xihe fault is the seismogenic fault of the Tangshan earthquake,it needs to explain the genesis relationship between this west-dip slip fault zone and the strike-slip surface fissure zone that extends through Tangshan city.And it needs more evidence exclude the possibility that the surface rupture belongs to the rupturing of a secondary structure.This paper suggests doing more work on the active fault that controls the Caobo Quaternary depression.
文摘Line structures such as pipelines that cross active faults should be designed to retain leak-tightness if the design displacement (Ddesign) occurs. Principal approaches to the Ddesign and rupture kinematics assessment are described. They are based on relationships between earthquake magnitude, rupture length and displacement, and on the detailed field data on a specific fault that crosses the pipeline route. Since the future offset at the crossing may exceed the design value, the probability of a displacement occurrence where the safety of the structure can not be ensured should be estimated. Assessment method on such event probability is described and exemplified through active fault studies carried out at several pipeline projects in Russia.
文摘Based on the analysises of regional structural setting, basin formation and deformation, this paper demonstrates that the Xianfeng basin has been formed and inverted under the strike-slip regime. The article is a partial result of the whole research.
基金funded by National Development and Reform Commission (NDRC)the People's Republic of China as the project"Experimental Exploration of Active Faults in Urban Area"(Grant No 20041138)
文摘The Tianjin fault includes South Tianjin fault and North Tianjin fault. Based on the results of artificial seismic exploration,four borehole profiles were laid out respectively west of Jinghai county town,Chaomidian village of Xiqing district,Xiaonanhe village of Xiqing district and Zhutoudian village of Ninghe county,to implement the exploration of these faults. Through identification of microfossils,the locations of marine beds in boreholes were obtained in this work,and through stratigraphic dating,the ages of the first,second and third marine beds were determined. Through strata correlation with the marine beds as key marker beds and integrating with the test results of paleo geomagnetism of boreholes BZ2 and TN3,the activity in the North and South Tianjin faults was analyzed and studied. The results indicate that there is no evidence of movement of the South Tianjin fault since the Late Pleistocene,but may have had weak activity before the Middle Pleistocene. No evidence of activity in the North Tianjin fault was found since the Late Pleistocene either,but might have been active in the early stage of the Early Pleistocene. These show that the activity of the South Tianjin fault is stronger than that of the North Tianjin fault. At the same time,we find that the second,third and fourth marine beds are lacking to some extent in different areas. So,before they are used in strata correlation, the age of marine beds must be determined,otherwise the results of strata correlation may lead to errors. For the second marine bed,where there has been dispute about its age,we consider the age to be about 70ka.
文摘The results from interpretation of the aerophotos and in-situ seismogeological researches show that there are some obvious late-Quaternary activities along the Moxi-Mianning segment of the Xianshuihe-Anninghe fault zone, with the characteristics of sinistral-slip movement accompanied by some significant vertical slip components. Since late-Quaternary, the average horizontal slip rate of the segment at the south of Moxi along the Xianshuihe fault is 6.0~9.9mm/a and 4.7~5.3mm/a along the segment at the north of Mianning of the Anninghe fault. The results from the investigation of coseismic dislocation and ground rupture show that the ground rupture caused by 1876 Kangding-Luding earthquake with M 7 3/ 4 can extend to the south of Tianwan. The segment at the north of Mianning of the Anninghe fault has a background for producing M7.5 earthquake and the geological record of the last strong earthquake must be the proofs of the 1327 earthquake with M>6.0 with poor historical records.
基金sponsored by the Active Fault Detecting Subprogram (2007-2230) of the"Chinese Digital Earthquake Observation Network"of the Tenth"Five-year Plan",China
文摘Deep and shallow tectonic data in Shenyang and its relationship with seismic activity shows that the NE trending faults developed on the surface control the formation and development of the fault-uplift and fault-depression. The uplift and depression of the bedrock at a depth of 7km underground are'consistent with the surface structure. 12 planar listric normal faults have developed above a depth of 18km -20km and two deep faults have developed in the lower crust. Because of the deep incision and new activities, the surface Wanggangpu-Xinehengzi fault and Yongle-Qingshuitai fault, which correspond to the deep F3 fault and F6 fault, might be related to seismic activity in Shenyang.
基金The project wasjointlysupported bythefollow-up projectsof moderately strong earthquake prediction of the North-South earthquake zone of China Earthquake Administration,theJoint Earthquake Science Foundation of CEA (104073) and the National Natural science Foundation of China(40372086) .Contribution No.LC20060016 of Lanzhou Institute of Seismology of CEA
文摘The East Kunlun active fault is an important NWW-trending boundary fault on the northeastern margin of the Qinghai-Xizang (Tibet) Plateau. The Maqu fault is the easternmost segment of the East Kunlun active fault. Based on three trenches, four Holocene palaeo-earthquake events are identified along the Maqu fault. The latest palaeo-earthquake event is (1730±50) ~ (1802±52) a BP, the second is (3736±57) ~ (4641±60) a BP, the third is (8590±70) a BP, and the earliest is (12200±1700) ka BP. The time of the first and second palaeo-earthquake events is more reliable than that of the third and last ones. As a result, the recurrence interval of the palaeo-earthquakes on the easternmost segment of the East Kunlun active fault is approximately 2400 a, and the palaeo-earthquake elapsed time is (1730±50) ~ (1802±52) a BP.
基金sponsored by the Special Earthquake Research Program(20070851)National Key Basic Research Development Planning grogram(2004CB418401)+1 种基金Basic Science Research Professional of Institute of Crustal Dynamics (2008)National Science and Technology Support Program(2006BAC13B01 -0202),China
文摘The M8.0 Wenchuan earthquake occurred on the Longmenshan fault zone. Based on field investigation of the surface rupture and focal mechanism study of the aftershocks, we discuss the geological relationship of the main, secondary and triggered ruptures. The main rupture is about 200km long and can be divided into the south part and the north part. The south part consists of two parallel fault zones characterized by reverse faulting, with several parallel secondary ruptures on the hanging wall of the main fault, and the north part is a single main fault zone characterized by lateral strike-slip and reverse faulting. Compared to a 300km long aftershock distribution, the surface rupture only occupies 200km, and the remaining lOOkm on the northeast of the main rupture was triggered by aftershocks. Study on the ruptures of this earthquake will be useful for studying the earthquake risk evolution on the Longmenshan fault system.