期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
盾构隧道管片设计若干问题研究与探讨 被引量:19
1
作者 戴志仁 《铁道工程学报》 EI 北大核心 2012年第6期65-70,共6页
研究目的:目前盾构隧道管片设计的随意性较大,计算方法缺少相应的理论支撑,计算模型的选取无法体现管片的实际受力情况,无法体现地层与衬砌结构的相互作用,计算参数的取值与实际情况出入较大等。为了进一步加强管片结构设计的准确性与... 研究目的:目前盾构隧道管片设计的随意性较大,计算方法缺少相应的理论支撑,计算模型的选取无法体现管片的实际受力情况,无法体现地层与衬砌结构的相互作用,计算参数的取值与实际情况出入较大等。为了进一步加强管片结构设计的准确性与可靠性,对管片设计中涉及的一些主要问题进行研究。研究结论:通过分析得出,对于管片结构,应该采用梁—弹簧模型进行受力分析;管片结构上受到的水压力应按径向加载,隧道拱底反力应取浮力与竖向荷载的较大值,管片与地层的相互作用应通过管片四周设置的径向与切向土弹簧来实现;采用地层应力释放系数来模拟盾构施工对周围地层的扰动效应,得出应利用浆液的最小屈服强度控制盾尾后方隧道的上浮趋势。 展开更多
关键词 盾构隧道 管片 计算模型 地层荷载 密封垫 隧道上浮
下载PDF
Stability of submarine slopes in the northern South China Sea: a numerical approach 被引量:1
2
作者 张亮 栾锡武 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2013年第1期146-158,共13页
Submarine landslides occur frequently on most continental margins. They are effective mechanisms of sediment transfer but also a geological hazard to seafloor installations. In this paper, submarine slope stability is... Submarine landslides occur frequently on most continental margins. They are effective mechanisms of sediment transfer but also a geological hazard to seafloor installations. In this paper, submarine slope stability is evaluated using a 2D limit equilibrium method. Considerations of slope, sediment, and triggering force on the factor of safety (FOS) were calculated in drained and undrained (4=0) cases. Results show that submarine slopes are stable when the slope is 〈16° under static conditions and without a weak interlayer. With a weak interlayer, slopes are stable at 〈18° in the drained case and at 〈9° in the undrained case. Earthquake loading can drastically reduce the shear strength of sediment with increased pore water pressure. The slope became unstable at 〉13° with earthquake peak ground acceleration (PGA) of 0.5 g; whereas with a weak layer, a PGA of 0.2 g could trigger instability at slopes 〉 10°, and 〉3 ° for PGA of 0.5 g. The northern slope of the South China Sea is geomorphologically stable under static conditions. However, because of the possibility of high PGA at the eastern margin of the South China Sea, submarine slides are likely on the Taiwan Bank slope and eastern part of the Dongsha slope. Therefore, submarine slides recognized in seismic profiles on the Taiwan Bank slope would be triggered by an earthquake, the most important factor for triggering submarine slides on the northern slope of the South China Sea. Considering the distribution of PGA, we consider the northern slope of the South China Sea to be stable, excluding the Taiwan Bank slope, which is tectonically active. 展开更多
关键词 submarine landslide factor of safety EARTHQUAKE South China Sea
下载PDF
Rock mechanical investigation of strata loading characteristics to assess caving and requirement of support resistance in a mechanized powered support longwall face 被引量:6
3
作者 Aveek Mangal P.S.Paul 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1081-1087,共7页
Longwall mining is one of the most acclaimed and widely used in underground method for coal extraction. The interaction of powered supports with the roof is the key issue in strata mechanics of longwall mining. Contro... Longwall mining is one of the most acclaimed and widely used in underground method for coal extraction. The interaction of powered supports with the roof is the key issue in strata mechanics of longwall mining. Controlled caving of rock mass is a prerequisite pro thriving exploitation of coal deposits by longwall retreat with caving technique and support resistance has evolved as the most promising and effective scientific tool to predict various aspects related to strata mechanics of such workings. Load density,height of caving block, distance of fractured zone ahead of the face, overhang of goaf and mechanical strength of the debris above and below the support base have been found to influence the magnitude of load on supports. Designing powered support has been attempted at the different countries in different methods. This paper reviews the mechanism of roof caving and the conventional approaches of caving behaviour and support resistance requirement in the context of major strata control experiences gained worldwide. The theoretical explanation of the mechanism of roof caving is still continuing with consistently improved understanding through growing field experiences in the larger domain of geo-mining conditions and state-of-art strata mechanics analysis and monitoring techniques. 展开更多
关键词 Longwall mining Geo-mechanics Caving behaviour Support resistance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部