Rockburst has perennially posed a formidable challenge to the stability of underground engineering works,particularly under conditions of deep-seated high stress.This paper provides a comprehensive review of recent ad...Rockburst has perennially posed a formidable challenge to the stability of underground engineering works,particularly under conditions of deep-seated high stress.This paper provides a comprehensive review of recent advancements in on-site research related to rockburst occurrences,covering on-site case analyses,monitoring methodologies,early warning systems,and risk(proneness)evaluation.Initially,the concepts and classifications of rockburst based on on-site understanding were summarized.The influences of structural planes(in various spatial distribution combinations),in-situ stress(particularly magnitude and direction of the principal stress),dynamic disturbances,and excavation profiles on rockburst were thoroughly assessed and discussed through the analysis of published rockburst cases and on-site survey results.Subsequently,a compendium of commonly employed on-site monitoring techniques was outlined,delineating their respective technical attributes.Particular emphasis is accorded to the efficacy of microseismic monitoring technology and its prospective utility in facilitating dynamic rockburst early warning mechanisms.Building upon this foundation,the feasibility of assessing rockburst propensity while considering on-site variables is verified,encompassing the selection and quantitative evaluation of pertinent indicators.Ultimately,a comprehensive synthesis of the paper is presented,alongside the articulation of prospective research goals for the future.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ...Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.展开更多
Ultrasonic velocities of a set of saturated sandstone samples were measured at simulated in-situ pressures in the laboratory.The samples were obtained from the W formation of the WXS Depression and covered low to near...Ultrasonic velocities of a set of saturated sandstone samples were measured at simulated in-situ pressures in the laboratory.The samples were obtained from the W formation of the WXS Depression and covered low to nearly high porosity and permeability ranges.The brine and four different density oils were used as pore fluids,which provided a good chance to investigate fluid viscosity-induced velocity dispersion.The analysis of experimental observations of velocity dispersion indicates that(1)the Biot model can explain most of the small discrepancy(about 2–3%)between ultrasonic measurements and zero frequency Gassmann predictions for high porosity and permeability samples saturated by all the fluids used in this experiment and is also valid for medium porosity and permeability samples saturated with low viscosity fluids(less than approximately 3 mP·S)and(2)the squirt flow mechanism dominates the low to medium porosity and permeability samples when fluid viscosity increases and produces large velocity dispersions as high as about 8%. The microfracture aspect ratios were also estimated for the reservoir sandstones and applied to calculate the characteristic frequency of the squirt flow model,above which the Gassmann’ s assumptions are violated and the measured high frequency velocities cannot be directly used for Gassmann’s fluid replacement at the exploration seismic frequency band for W formation sandstones.展开更多
The method of Random Forest (RF) was used to classify whether rockburst will happen and the intensity of rockburst in the underground rock projects. Some main control factors of rockburst, such as the values of in-s...The method of Random Forest (RF) was used to classify whether rockburst will happen and the intensity of rockburst in the underground rock projects. Some main control factors of rockburst, such as the values of in-situ stresses, uniaxial compressive strength and tensile strength of rock, and the elastic energy index of rock, were selected in the analysis. The traditional indicators were summarized and divided into indexes I and 1I. Random Forest model and criterion were obtained through training 36 sets of rockburst samples which come from underground rock projects in domestic and abroad. Another 10 samples were tested and evaluated with the model. The evaluated results agree well with the practical records. Comparing the results of support vector machine (SVM) method, and artificial neural network (ANN) method with random forest method, the corresponding misjudgment ratios are 10%, 20%, and 0, respectively. The misjudgment ratio using index I is smaller than that using index II. It is suggested that using the index I and RF model can accurately classify rockburst grade.展开更多
[Objective] To select excellent pioneer species of better ecological and economical comprehensive benefits from the common rock hill plants in Karst area in northwestern Guangxi Province.[Method] Determine the content...[Objective] To select excellent pioneer species of better ecological and economical comprehensive benefits from the common rock hill plants in Karst area in northwestern Guangxi Province.[Method] Determine the contents of malondialdehyde and proline in leaves of 65 strains of plants by thiobarbituric acid method and sultosalicylic acid method,analyze the relevance of the contents of malondialdehyde and proline by mathematics statistics and analyze the 65 kinds of rock hill plants by clustering [Result] The contents of malondialdehyde and proline are 0.005 2-0.038 1 μmol/g.There are comparably significant differences in the contents of malondialdehyde in different plants;The determination of proline contents in plant's leaves are 4.347-374.956 μg/ml.There are also significant differences in proline of different leaves of rock hill plants.The contents of malondialdehyde and proline can be used as a reference point in selecting pioneer plants in Karst area.But when we select the pioneer plants,not only the biological characters of the species themselves should be taken into consideration,but also the differences of Karst area environment,ecological and biological benefits and the reasonable distribution of species.[Conclusion] Pistacia chinensis,Zenia insignis,Acacia confusa,Itoa orientalis and Sophora japonica can be used as the first choices of excellent pioneer plants in Karst area in northwestern area which comparably consists with the real situation of afforestation of rock hills and recovery of plants in Guangxi.展开更多
基金Project(2023YFB2603602)supported by the National Key Research and Development Program of ChinaProjects(52222810,52178383)supported by the National Natural Science Foundation of China。
文摘Rockburst has perennially posed a formidable challenge to the stability of underground engineering works,particularly under conditions of deep-seated high stress.This paper provides a comprehensive review of recent advancements in on-site research related to rockburst occurrences,covering on-site case analyses,monitoring methodologies,early warning systems,and risk(proneness)evaluation.Initially,the concepts and classifications of rockburst based on on-site understanding were summarized.The influences of structural planes(in various spatial distribution combinations),in-situ stress(particularly magnitude and direction of the principal stress),dynamic disturbances,and excavation profiles on rockburst were thoroughly assessed and discussed through the analysis of published rockburst cases and on-site survey results.Subsequently,a compendium of commonly employed on-site monitoring techniques was outlined,delineating their respective technical attributes.Particular emphasis is accorded to the efficacy of microseismic monitoring technology and its prospective utility in facilitating dynamic rockburst early warning mechanisms.Building upon this foundation,the feasibility of assessing rockburst propensity while considering on-site variables is verified,encompassing the selection and quantitative evaluation of pertinent indicators.Ultimately,a comprehensive synthesis of the paper is presented,alongside the articulation of prospective research goals for the future.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金Projects(52334003,52104111,52274249)supported by the National Natural Science Foundation of ChinaProject(2022YFC2903901)supported by the National Key R&D Project of ChinaProject(2024JJ4064)supported by the Natural Science Foundation of Hunan Province,China。
文摘Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.40830423and40904029)CNOOC Zhanjiang Research Project(Contract No.Z2008SLZJ-FN0158)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Ultrasonic velocities of a set of saturated sandstone samples were measured at simulated in-situ pressures in the laboratory.The samples were obtained from the W formation of the WXS Depression and covered low to nearly high porosity and permeability ranges.The brine and four different density oils were used as pore fluids,which provided a good chance to investigate fluid viscosity-induced velocity dispersion.The analysis of experimental observations of velocity dispersion indicates that(1)the Biot model can explain most of the small discrepancy(about 2–3%)between ultrasonic measurements and zero frequency Gassmann predictions for high porosity and permeability samples saturated by all the fluids used in this experiment and is also valid for medium porosity and permeability samples saturated with low viscosity fluids(less than approximately 3 mP·S)and(2)the squirt flow mechanism dominates the low to medium porosity and permeability samples when fluid viscosity increases and produces large velocity dispersions as high as about 8%. The microfracture aspect ratios were also estimated for the reservoir sandstones and applied to calculate the characteristic frequency of the squirt flow model,above which the Gassmann’ s assumptions are violated and the measured high frequency velocities cannot be directly used for Gassmann’s fluid replacement at the exploration seismic frequency band for W formation sandstones.
基金Projects (50934006, 10872218) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported bythe National Basic Research Program of China+1 种基金Project (kjdb2010-6) supported by Doctoral Candidate Innovation Research Support Program of Science & Technology Review, ChinaProject (201105) supported by Scholarship Award for Excellent Doctoral Student,Ministry of Education, China
文摘The method of Random Forest (RF) was used to classify whether rockburst will happen and the intensity of rockburst in the underground rock projects. Some main control factors of rockburst, such as the values of in-situ stresses, uniaxial compressive strength and tensile strength of rock, and the elastic energy index of rock, were selected in the analysis. The traditional indicators were summarized and divided into indexes I and 1I. Random Forest model and criterion were obtained through training 36 sets of rockburst samples which come from underground rock projects in domestic and abroad. Another 10 samples were tested and evaluated with the model. The evaluated results agree well with the practical records. Comparing the results of support vector machine (SVM) method, and artificial neural network (ANN) method with random forest method, the corresponding misjudgment ratios are 10%, 20%, and 0, respectively. The misjudgment ratio using index I is smaller than that using index II. It is suggested that using the index I and RF model can accurately classify rockburst grade.
基金Supported by Natural Science Foundation of Guangxi(Guangxi Sci-ence8032273)Key Laboratory of Colleges and Universities.(Guangxi Education and Scientific Research NO.2010[6])~~
文摘[Objective] To select excellent pioneer species of better ecological and economical comprehensive benefits from the common rock hill plants in Karst area in northwestern Guangxi Province.[Method] Determine the contents of malondialdehyde and proline in leaves of 65 strains of plants by thiobarbituric acid method and sultosalicylic acid method,analyze the relevance of the contents of malondialdehyde and proline by mathematics statistics and analyze the 65 kinds of rock hill plants by clustering [Result] The contents of malondialdehyde and proline are 0.005 2-0.038 1 μmol/g.There are comparably significant differences in the contents of malondialdehyde in different plants;The determination of proline contents in plant's leaves are 4.347-374.956 μg/ml.There are also significant differences in proline of different leaves of rock hill plants.The contents of malondialdehyde and proline can be used as a reference point in selecting pioneer plants in Karst area.But when we select the pioneer plants,not only the biological characters of the species themselves should be taken into consideration,but also the differences of Karst area environment,ecological and biological benefits and the reasonable distribution of species.[Conclusion] Pistacia chinensis,Zenia insignis,Acacia confusa,Itoa orientalis and Sophora japonica can be used as the first choices of excellent pioneer plants in Karst area in northwestern area which comparably consists with the real situation of afforestation of rock hills and recovery of plants in Guangxi.