期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
加筋垫层对地基沉降控制效果的多方案比较 被引量:20
1
作者 黄广军 张千里 +2 位作者 俞锡健 罗强 蔡英 《岩土工程学报》 EI CAS CSCD 北大核心 2001年第5期598-601,共4页
针对秦沈客运专线 ,结合室内模型试验 ,利用有限元法 ,对不同加筋材料、不同布筋方式的多种加筋垫层方案进行了分析和比较 ,研究加筋垫层对地基沉降的控制作用。分析结果表明 ,土工格室加筋垫层对控制软土地基沉降具有较好的作用。
关键词 加筋垫层 地基处理 地工合成材料 地基沉降
下载PDF
Comparison between responses of reinforced and unreinforced embankments due to road widening 被引量:14
2
作者 黄晓明 汪浩 《Journal of Central South University》 SCIE EI CAS 2009年第5期857-864,共8页
The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite el... The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite element(FE) model. The measured and calculated responses of the embankment and foundation exposed to road widening include the settlement,horizontal displacement,pore water pressure,and shear stresses. It is found that the road widening changed the transverse slope of the original pavement surface resulting from the nonuniform settlements. The maximum horizontal movement is found to be located at the shoulder of the original embankment. Although the difference is small,it is clearly seen that the geosynthetic reinforcement reduces the nonuniform settlements and horizontal movements due to road widening. Thus the reinforcement reduces the potential of pavement cracking and increases the stability of the embankment on soft ground in road widening. 展开更多
关键词 REINFORCEMENT centrifuge model test finite element model EMBANKMENT road widening
下载PDF
Vertical drainage capacity of new electrical drainage board on improvement of super soft clayey ground 被引量:1
3
作者 沈扬 励彦德 +2 位作者 黄文君 徐海东 胡品飞 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4027-4034,共8页
As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage(EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly i... As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage(EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly impacted by the vertical drainage capability. Therefore, vertical drainage capability at the top of EVD board was theoretically analyzed. Basic requirements for drainage at the top of the board were summed up, as well as the formula of anode pore pressure when losing the vertical drainage capability. Meanwhile, a contrast test on the top and bottom drainage capacities was conducted. In use of the advanced EVD board, the voltage potential and pore pressure of anode were measured. Moreover, the derived formulas were verified. The result shows that the decrease of electric force gradient had an observable impact on the drainage capability. There was nearly no difference between the energy consumption for the two drainage methods. Although a little less water was discharged, the top drainage method had more advantages, such as high initial drainage velocity, few soil cracks, low anode water content and high soil strength. All of these show that the super soft soil ground could be consolidated quickly in use of the advanced EVD board through the top drainage. The top drainage method could efficiently improve the drainage effect, decrease the energy consumption and speed up the project proceeding. 展开更多
关键词 electro-osmotic vertical drainage(EVD) board vertical drainage capacity potential gradient pore pressure around anode
下载PDF
Field study on performance of new technique of geosynthetic-reinforced and pile-supported embankment at bridge approach 被引量:2
4
作者 ZHANG Jun ZHENG JunJie +1 位作者 ZHAO DuiJia CHEN ShouGen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第1期162-174,共13页
Vehicle bumps at a bridge approach caused by the differential settlement between a bridge and an adjacent backfill embankment are one of the most difficult problems in geotechnical engineering. Large vehicle bumps mak... Vehicle bumps at a bridge approach caused by the differential settlement between a bridge and an adjacent backfill embankment are one of the most difficult problems in geotechnical engineering. Large vehicle bumps make drivers uncomfortable and cause large impact loads on vehicles and the bridge abutment. A new ground-improvement technique called fixed-geosynthetic-reinforced and pile-supported embankment(FGT embankment) was developed and used to alleviate vehicle bumps at a trial bridge-approach site located in central China. To distribute the differential settlement between the bridge and adjacent backfill embankment over a long transition zone, the following three techniques were used at the trial bridge-approach site:(a) the FGT embankment,(b) conventional geosynthetic-reinforced and pile-supported embankment(CT embankment), and(c) geosynthetic-reinforced embankment without piles(GR embankment). The performance of all three techniques in the field trial was investigated by field measurements involving earth pressure cells, geosynthetic deformation sensors, and settlement gauges. The FGT and CT embankments exhibited better performance than the GR embankment. Compared with the CT embankment, the FGT embankment was more effective at ground improvement. At an elevation of 4.0 m from the base of the embankment, the pressures below the geosynthetic were smaller than those above the geosynthetic at the closest measurement point. The difference between the pressures between above and below the geosynthetic tended to increase with the embankment height. 展开更多
关键词 pile supported embankment geosynthetic field test bridge approach ground improvement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部