Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fract...Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fractions and soil nutrients in the first rotation site and the second rotation site of Chinese fir plantation and the native broad-leaved forest were investigated and analyzed by soil sampling at the Huitong Experimental Station of Forestry Ecology (at latitude 26°48′N and longitude 109°30′E under a subtropical climate conditions), Chinese Academy of Sciences in March, 2004. The results showed that values of ASOM fractions for the Chinese fir plantations were lower than those for the broad-leaved forest. The contents of easily oxidisable carbon (EOC), microbial biomass carbon (MBC), water soluble carbohydrate (WSC) and water-soluble organic carbon (WSOC) for the first rotation of Chinese fir plantation were 35.9%, 13.7%, 87.8% and 50.9% higher than those for the second rotation of Chinese fir plantation, and were 15.8%, 47.3%, 38.1% and 30.2% separately lower than those for the broad-leaved forest. For the three investigated forest sites, the contents of MBC and WSOC had a larger decrease, followed by WSC, and the change of EOC was least. Moreover, soil physico-chemistry properties such as soil nutrients in Chinese fir plantation were lower than those in broad-leaved forest. It suggested that soil fertility declined after Chinese fir plantation replaced native broad-leaved forest through continuous artificial plantation.展开更多
文摘Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fractions and soil nutrients in the first rotation site and the second rotation site of Chinese fir plantation and the native broad-leaved forest were investigated and analyzed by soil sampling at the Huitong Experimental Station of Forestry Ecology (at latitude 26°48′N and longitude 109°30′E under a subtropical climate conditions), Chinese Academy of Sciences in March, 2004. The results showed that values of ASOM fractions for the Chinese fir plantations were lower than those for the broad-leaved forest. The contents of easily oxidisable carbon (EOC), microbial biomass carbon (MBC), water soluble carbohydrate (WSC) and water-soluble organic carbon (WSOC) for the first rotation of Chinese fir plantation were 35.9%, 13.7%, 87.8% and 50.9% higher than those for the second rotation of Chinese fir plantation, and were 15.8%, 47.3%, 38.1% and 30.2% separately lower than those for the broad-leaved forest. For the three investigated forest sites, the contents of MBC and WSOC had a larger decrease, followed by WSC, and the change of EOC was least. Moreover, soil physico-chemistry properties such as soil nutrients in Chinese fir plantation were lower than those in broad-leaved forest. It suggested that soil fertility declined after Chinese fir plantation replaced native broad-leaved forest through continuous artificial plantation.