期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
致密储层地应力值计算方法研究 被引量:1
1
作者 张萍 《石油化工应用》 CAS 2018年第5期14-17,共4页
利用压裂施工曲线计算地应力值是目前最可靠、直接的方法。本文通过对鄂尔多斯盆地某井区6口井压裂施工曲线进行分析,选取压裂施工曲线选取破裂压力、延伸压力和停泵压力等参数计算地应力值,并与声发射和声波测井曲线测得的应力值进行对... 利用压裂施工曲线计算地应力值是目前最可靠、直接的方法。本文通过对鄂尔多斯盆地某井区6口井压裂施工曲线进行分析,选取压裂施工曲线选取破裂压力、延伸压力和停泵压力等参数计算地应力值,并与声发射和声波测井曲线测得的应力值进行对比,具有较好的一致性,该计算方法为地应力剖面的校正提供可参考的依据。 展开更多
关键词 压裂施工曲线 地应力值 声波测井 声发射
下载PDF
基于压裂施工曲线计算储层地应力 被引量:5
2
作者 王新君 《重庆科技学院学报(自然科学版)》 CAS 2018年第3期10-13,共4页
对杭锦旗区块58井区6口井16层压裂施工曲线进行分析,通过破裂压力、停泵压力和延伸压力计算储层的最大主应力、最小主应力和中间应力值,并与偶极声发射法测得的应力值进行对比,结果显示,二者具有较好的一致性。
关键词 杭锦旗锦58井区 压裂曲线 地应力值 偶极声波测井 凯塞尔效应
下载PDF
宁武盆地南部煤层气富集的主控因素 被引量:18
3
作者 田文广 汤达祯 +1 位作者 孙斌 任源锋 《天然气工业》 EI CAS CSCD 北大核心 2010年第6期22-25,共4页
宁武盆地是我国典型的中煤阶构造残余盆地,勘探证实其南部具有很好的煤层气勘探潜力,但煤层气富集的主控因素尚不清楚。为此,分析了盆地南部主要含煤地层的沉积环境、煤质特征、热演化程度与煤阶分布、煤储层物性等地质特征,通过构造特... 宁武盆地是我国典型的中煤阶构造残余盆地,勘探证实其南部具有很好的煤层气勘探潜力,但煤层气富集的主控因素尚不清楚。为此,分析了盆地南部主要含煤地层的沉积环境、煤质特征、热演化程度与煤阶分布、煤储层物性等地质特征,通过构造特征、地应力分布特征、封盖条件分析,结合前期勘探成果,综合研究后认为:宁武盆地南部煤层气的富集受构造部位、应力场以及煤层顶底板封闭条件控制,构造上斜坡带煤层气富集高产,构造应力场低值区煤层渗透性好,封闭条件好的地区煤层气保存条件好。进而预测出W02井以东、W04井以南地区具有获得高产煤层气井的有利条件,是有利的煤层气富集区。 展开更多
关键词 宁武盆地 煤层气 富集 斜坡带 地应力场低 主控因素 有利区 封盖层
下载PDF
Petrel2ANSYS: Accessible software for simulation of crustal stress fields using constraints provided by multiple 3D models employing different types of grids 被引量:7
4
作者 LIU Yu-yang PAN Mao LIU Shi-qi 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2447-2463,共17页
Crustal stresses play an important role in both exploration and development in the oil and gas industry.However,it is difficult to simulate crustal stress distributions accurately,because of the incompatibilities that... Crustal stresses play an important role in both exploration and development in the oil and gas industry.However,it is difficult to simulate crustal stress distributions accurately,because of the incompatibilities that exist among different software.Here,a series of algorithms is developed and integrated in the Petrel2ANSYS to carry out two-way conversions between the 3D attribute models that employ corner-point grids used in Petrel and the 3D finite-element grids used in ANSYS.Furthermore,a modified method of simulating stress characteristics and analyzing stress fields using the finite-element method and multiple finely resolved 3D models is proposed.Compared to the traditional finite-element simulation-based approach,which involves describing the heterogeneous within a rock body or sedimentary facies in detail and simulating the stress distribution,the single grid cell-based approach focuses on a greater degree on combining the rock mechanics described by 3D corner-point grid models with the finely resolved material characteristics of 3D finite-element models.Different models that use structured and unstructured grids are verified in Petrel2ANSYS to assess the feasibility.In addition,with minor modifications,platforms based on the present algorithms can be extended to other models to convert corner-point grids to the finite-element grids constructed by other software. 展开更多
关键词 numerical simulation of stress fields corner-point grids finite-element grids PETREL ANSYS
下载PDF
Numerical simulation study on the influence of the ground stress field on the stability of roadways 被引量:8
5
作者 ZHANG Hualei 《Mining Science and Technology》 EI CAS 2010年第5期707-711,共5页
We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC3D was used to investigate the maximum ten... We adopt the concept of generalized plane strain to model a roadway in a stress field.This can avoid limitations caused by simplifying the stress analysis as plane strain.FLAC3D was used to investigate the maximum tensile stress and displacement of a roadway in a known stress field for angles,α,between the roadway axial direction and the maximum principal stress of 0°,30°,45°,60° and 90°.This theory was applied to the analysis of an engineering case.The results indicate that stress and displacement of the surrounding rock increase as the angle,α,increases.This provides some significant guidance for a reasonable layout of roadways in a known stress field. 展开更多
关键词 ROADWAY ground stress field generalized plane strain numerical simulation
下载PDF
Control technology and coordination deformation mechanism of rise entry group with high ground stress 被引量:4
6
作者 Li Qingfeng Zhu Quanqu 《International Journal of Mining Science and Technology》 SCIE EI 2012年第3期429-435,共7页
Based on engineering practices of Wuyang Coal Mine, we carried out X-ray diffract researches on No. 3 coal; and the rocks of its roof and floor by XRD meter, and simulated the interactive effect of the surrounding roc... Based on engineering practices of Wuyang Coal Mine, we carried out X-ray diffract researches on No. 3 coal; and the rocks of its roof and floor by XRD meter, and simulated the interactive effect of the surrounding rock deformation by FLAC2DS.0 numerical simulation software under the condition of different tunneling method of multimine roadway in parallel. The internal structures of the surrounding rocks of 76 belt roadway were monitored by borehole observation instruments: and then, we analyzed the reason of fhilure and deformation of surrounding rocks of several rise entry, and proposed the technical mea- sures for controlling interactive effect of several rise entry surrounding rock deformation at last. For the thickness seam rise roadway, two conclusions were drawn: one is that the co-deformation among roadway groups mainly reflect on that both shear failure and deformation in coal pillar among roadways have decreased the width of pillar core region and clamping action of coal pillar to roof strata, increased the actual span of roof strata, intensified the flexural failure of roof strata and prized the bed separation of roof deep rock strata. The other conclusion is that the factors controlling the interactive deformation among roadways is obvious when appropriate re-adjustment in construction sequence of the tunneling of multimine parallel roadways because the construction sequence among roadways also has great effects on deformation of the surrounding rock in roadway. 展开更多
关键词 Several rise entryCoordination deformationNumerical simulationConstruction sequence
下载PDF
Study on the Recent Tectonic Stress Field in the “Huoshan Seismic Window” Region 被引量:1
7
作者 Ni Hongyu Liu Zemin +3 位作者 Hong Dequan Li Lingli Zheng Xianjin Xu Xin 《Earthquake Research in China》 2013年第4期467-478,共12页
The focal mechanisms of 62 moderate-small earthquakes since 1980 in the " Huoshan seismic window" region are calculated with the method developed recently by Snoke, combining the use of the first motion of P, SV and... The focal mechanisms of 62 moderate-small earthquakes since 1980 in the " Huoshan seismic window" region are calculated with the method developed recently by Snoke, combining the use of the first motion of P, SV and SH waves with their amplitude ratios. Based on these abundant focal mechanisms, the mean tectonic stress field in the "Huoshan seismic window" region is inverted with the average stress tensor method, and the result shows that the "Huoshan seismic window" region is horizontally compressed in the near EW direction and horizontally dilated in the near NS direction, which is in accord with statistical results of focal mechanism parameters. We estimate the difference (also referred to as consistency parameter 0) between the force axis direction of the focal mechanism solution and the mean stress tensor, then further analyze the variation characteristics of 0 versus time, and the relationship with moderately strong earthquakes in the east China region. The result indicates that 0 in the " Huoshan seismic window" region is in good correspondence with moderately strong earthquakes in the East China region. When 0 is lower than the mean value, corresponding moderately strong earthquakes may occur in the East China region. 展开更多
关键词 Focal mechanism solutions Consistency parameter Tectonic stress field The"Huoshan seismic window" East China region
下载PDF
Movement and deformation laws of the overlying strata in paste filling stope 被引量:5
8
作者 Xu Ying Chang Qingliang +3 位作者 Zhou Huaqiang Cao Zhong Li Xiushan Chen Jianhang 《Mining Science and Technology》 EI CAS 2011年第6期863-868,共6页
We combined the similar simulation with numerical simulation to analyze the movement and deforma- tion features of overlying strata caused by paste backfill mining, study the movement and deformation laws of the overl... We combined the similar simulation with numerical simulation to analyze the movement and deforma- tion features of overlying strata caused by paste backfill mining, study the movement and deformation laws of the overlying strata in paste backfill mining, structural movement of the stope strata as well as the stope stress distribution laws. Furthermore, authors also explored the key factors to the movement and deformation of the overlying strata in paste backfill mining. The results indicate that a caving zone existed in the bending zone only in the overlying strata of the paste backfill mining. Compared with the roof caving mining, the degree of stress concentration and area of influence in the paste filling stope were apparently smaller. And the degree of destruction and area of the overlying strata decreased prominently. Also, there was no apparent strata behavior in the working face. Lastly, the filling ratio was the key to control the movement and deformation of the overlying strata. Combined with a specific engineering example, the author proved the reliability of the simulation results and provided a theoretical basis for the further extension of the paste backfill mining. 展开更多
关键词 Paste backfill mining Movement of overlying strata Stope stress Similar simulation
下载PDF
Mechanical response features and failure process of soft surrounding rock around deeply buried three-centered arch tunnel 被引量:1
9
作者 赵瑜 张志刚 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4064-4073,共10页
Due to the extreme complexity of mechanical response of soft surrounding rock(SR) around a tunnel under high geostatic stress conditions, the integration of physical and numerical modeling techniques was adopted. Base... Due to the extreme complexity of mechanical response of soft surrounding rock(SR) around a tunnel under high geostatic stress conditions, the integration of physical and numerical modeling techniques was adopted. Based on the similarity theory, new composite-similar material was developed, which showed good agreement with the similarity relation and successfully simulated physico-mechanical properties(PMP) of deep buried soft rock. And the 800 mm×800 mm×200 mm physical model(PM) was conducted, in which the endoscopic camera technique was adopted to track the entire process of failure of the model all the time. The experimental results indicate that the deformation of SR around a underground cavern possessed the characteristics of development by stages and in delay, and the initial damage of SR could induce rapid failure in the later stage, and the whole process could be divided into three stages, including the localized extension of crack(the horizontal load(HL) was in the range of 130 k N to 170 k N, the vertical load(VL) was in the range of 119 k N to 153.8 k N), rapid crack coalescence(the HL was in the range of 170 k N to 210 k N, the VL was in the range of 153.8 k N to 182.5 k N) and residual strength(the HL was greater than 210 k N, the VL was greater than 182.5 k N). Under the high stress conditions, the phenomenon of deformation localization in the SR became serious and different space positions show different deformation characteristics. In order to further explore the deformation localization and progressive failure phenomenon of soft SR around the deeply buried tunnel, applying the analysis software of FLAC3 D three-dimensional explicit finite-difference method, based on the composite strain-softening model of Mohr-Coulomb shear failure and tensile failure, the calculation method of large deformation was adopted. Then, the comparative analysis between the PM experiment and numerical simulation of the three centered arch tunnels was implemented and the relationship of deformation localization and progressive failure of SR around a tunnel under high stress conditions was discussed. 展开更多
关键词 deeply buried tunnel physical model(PM) surrounding rock(SR) failure process
下载PDF
Mode-I-crack compression modeling and numerical simulation for evaluation of in-situ stress around advancing coal workfaces
10
作者 LIU Wei-qun ZHU Li 《Mining Science and Technology》 EI CAS 2009年第5期569-573,共5页
The relatively high stress probably leads to generation of a fractured or even instable area around a working coalface. Also, the generated weak area often evolves into an easy-infiltrating field of water/gas to great... The relatively high stress probably leads to generation of a fractured or even instable area around a working coalface. Also, the generated weak area often evolves into an easy-infiltrating field of water/gas to greatly increase probability of accident occurrence. To reveal the distribution of high stress around working faces, we put forward the mode-I-crack compression model. In this model, the goaf following a working face is regarded as a mode-I crack in an infinite plate, and the self-gravity of overlaying strata is transformed into an uniform pressure applied normal to the upper edge of the model crack. Solving this problem is based on the Westergaard complex stress function. For comparison, the software RFPA-2D is also employed to simulate the same mining problem, and furthermore extendedly to calculate the stress interference induced by the simultaneous advances of two different working faces. The results show that, the area close to a working face or the goaf tail has the maximum stress, and the stress is distributed directly proportional to the square root of the advance and inversely proportional to the square root of the distance to the working face. The simultaneous advances of two neighboring working faces in different horizontals can lead to extremely high resultant stress in an interference area. 展开更多
关键词 mode-I-crack modeling Westergaard stress function working face high stress stress interference
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部