In this paper, we analyze the crustal movements, strain field changes and large scale dynamic characteristics of horizontal deformation before the Wenchuan earthquake ( Ms = 8.0) using GPS data obtained from the Cru...In this paper, we analyze the crustal movements, strain field changes and large scale dynamic characteristics of horizontal deformation before the Wenchuan earthquake ( Ms = 8.0) using GPS data obtained from the Crustal Movement Observation Network of China. The following issues are discussed. First, the strain fields of the Longmeushan fault zone located at the epicenter show slow accumulation, because of the tectonic dynamics process subjected to the eastward movement of the Bayan Har block. Second, the different movements between the Longmenshan fault and South China block are smaller than the errors of GPS observation. Third, the high value of compressive strain (2004 - 2007) is located at the epicenter, which shows that the local squeezing action is stronger than before. Fourth, the data from GPS reference stations in the Chinese Mainland show that crustal shortening is faster than before in the north-eastern direction, which is part of the background of the local tectonic dynamics increase in the Longmenshan fault zone.展开更多
Based on the horizontal deformation field and the strain field derived from the GPS data over the period of 1999~2001 in the Yunnan area, the characteristics of deformation and strain in the northern part of Yunnan P...Based on the horizontal deformation field and the strain field derived from the GPS data over the period of 1999~2001 in the Yunnan area, the characteristics of deformation and strain in the northern part of Yunnan Province have been studied. The results indicate that the central part of the studied area is rather stable with little crustal displacement, while the western and eastern parts are active with larger displacement. The strain field reveals that the orientations of the principal compressive strain axis of the crust and the sub blocks in the area are NW SE, while the orientations of the principal tensile strain axis is NE SW. In the studied area, the tensile strain is predominatly in the northern part and the compressive strain is predominatly in the central and southern parts. The stretching direction of the shear strain contour is basically consistent with the strike of the active fault. The strain and stress fields of the fault activity are related to the structure where the fault is located, while the activity properties of the faults are different.展开更多
The relationship between the strain rate field observed by GPS and global distribution of strong earthquakes is analyzed in this work. How do we recognize the characteristics of global seismic activities with space ob...The relationship between the strain rate field observed by GPS and global distribution of strong earthquakes is analyzed in this work. How do we recognize the characteristics of global seismic activities with space observation technology? A preliminary model of Cellular Automata that could simulate the global seismic activities both in time and space has been established based on the results of global strain rate field provided by the GSRM Program. The grid of the model is evenly divided,which is consistent with that of GSRM.The status of each cell is its strain state,and is adjusted according to the evolution rules.Maximum shear strain criterion is adopted in the evolution of the Cellular Automata. The threshold for cells in surface expansion is 80% of that for those in compression. The preliminary model could in general simulate the main characteristics of the distribution of the global seismic activities. It could exhibit in general the global distribution of weak and active tectonic activities. Although the preliminary Cellular Automata model needs to be improved in many aspects,the result suggests the possibility of modeling the general features of rather complicated global seismic activities based on the strain rates obtained by GPS and other observations.展开更多
Generalized Inversion Method has been used to estimate the spatial variation of site effects,using the digital data of SH-waves recorded by 63 stations in the Capital Circle Region of China from 2001 to 2006.We gained...Generalized Inversion Method has been used to estimate the spatial variation of site effects,using the digital data of SH-waves recorded by 63 stations in the Capital Circle Region of China from 2001 to 2006.We gained the site effects of all stations participating in the calculation.We found that the site effect of rock was stabile and about 1.0 from 1.0Hz to 10.0Hz,while the site effect of deposit was high in low frequencies,about 3 ~ 7 from 1.0Hz to 8.0Hz,and the site effect was protuberant at about 5.0Hz,then fell as the frequency increased.The result shows the shape and intensity of station site effects are mainly influenced by the lithology below the station,and possibly also by the local geological structure.展开更多
Based on faults surveying and research data in the Tianjin offshore areas,through studying tectonic structure,Quaternary activity,deep structure,stress and strain fields and seismicity in the Tianjin offshore areas,th...Based on faults surveying and research data in the Tianjin offshore areas,through studying tectonic structure,Quaternary activity,deep structure,stress and strain fields and seismicity in the Tianjin offshore areas,the activity and tectonic features of the faults are determined synthetically.Using seismo-geological data,and the historical and modern seismicity data,the frequency-magnitude relationship model normalized by 500a is established and based on the relationship between the upper limit of maximum magnitude M u and a t/b,the maximum magnitudes of the sea section of the Haihe river fault and the Haiyi fault are calculated.Then Poisson probability model is adopted and the quantitative parameters,such as the maximum magnitude,occurrence probability,recurrence cycle of the faults in the south Tianjin offshore areas in the coming 50~200a,are calculated.展开更多
基金sponsored by the National Key Science and Technology R&D Program (2006BAC01B02-02-02)and National Natural Science Foundation of China(40674010)
文摘In this paper, we analyze the crustal movements, strain field changes and large scale dynamic characteristics of horizontal deformation before the Wenchuan earthquake ( Ms = 8.0) using GPS data obtained from the Crustal Movement Observation Network of China. The following issues are discussed. First, the strain fields of the Longmeushan fault zone located at the epicenter show slow accumulation, because of the tectonic dynamics process subjected to the eastward movement of the Bayan Har block. Second, the different movements between the Longmenshan fault and South China block are smaller than the errors of GPS observation. Third, the high value of compressive strain (2004 - 2007) is located at the epicenter, which shows that the local squeezing action is stronger than before. Fourth, the data from GPS reference stations in the Chinese Mainland show that crustal shortening is faster than before in the north-eastern direction, which is part of the background of the local tectonic dynamics increase in the Longmenshan fault zone.
文摘Based on the horizontal deformation field and the strain field derived from the GPS data over the period of 1999~2001 in the Yunnan area, the characteristics of deformation and strain in the northern part of Yunnan Province have been studied. The results indicate that the central part of the studied area is rather stable with little crustal displacement, while the western and eastern parts are active with larger displacement. The strain field reveals that the orientations of the principal compressive strain axis of the crust and the sub blocks in the area are NW SE, while the orientations of the principal tensile strain axis is NE SW. In the studied area, the tensile strain is predominatly in the northern part and the compressive strain is predominatly in the central and southern parts. The stretching direction of the shear strain contour is basically consistent with the strike of the active fault. The strain and stress fields of the fault activity are related to the structure where the fault is located, while the activity properties of the faults are different.
基金sponsored by the National Key Techonology R&D Program(2012BAK19B01)the National Natural Foundation of China(41274098)
文摘The relationship between the strain rate field observed by GPS and global distribution of strong earthquakes is analyzed in this work. How do we recognize the characteristics of global seismic activities with space observation technology? A preliminary model of Cellular Automata that could simulate the global seismic activities both in time and space has been established based on the results of global strain rate field provided by the GSRM Program. The grid of the model is evenly divided,which is consistent with that of GSRM.The status of each cell is its strain state,and is adjusted according to the evolution rules.Maximum shear strain criterion is adopted in the evolution of the Cellular Automata. The threshold for cells in surface expansion is 80% of that for those in compression. The preliminary model could in general simulate the main characteristics of the distribution of the global seismic activities. It could exhibit in general the global distribution of weak and active tectonic activities. Although the preliminary Cellular Automata model needs to be improved in many aspects,the result suggests the possibility of modeling the general features of rather complicated global seismic activities based on the strain rates obtained by GPS and other observations.
基金sponsored by the Special Foundation of China Earthquake Administration (2007-8-26)
文摘Generalized Inversion Method has been used to estimate the spatial variation of site effects,using the digital data of SH-waves recorded by 63 stations in the Capital Circle Region of China from 2001 to 2006.We gained the site effects of all stations participating in the calculation.We found that the site effect of rock was stabile and about 1.0 from 1.0Hz to 10.0Hz,while the site effect of deposit was high in low frequencies,about 3 ~ 7 from 1.0Hz to 8.0Hz,and the site effect was protuberant at about 5.0Hz,then fell as the frequency increased.The result shows the shape and intensity of station site effects are mainly influenced by the lithology below the station,and possibly also by the local geological structure.
基金funded by earthquake security infrastructure of Tianjin 11th "Five-year Plan" (Tianjin Development and Reforming Office[2009]-1230),the Spark Program of Earthquake Sciences(Grant No.XH13002)
文摘Based on faults surveying and research data in the Tianjin offshore areas,through studying tectonic structure,Quaternary activity,deep structure,stress and strain fields and seismicity in the Tianjin offshore areas,the activity and tectonic features of the faults are determined synthetically.Using seismo-geological data,and the historical and modern seismicity data,the frequency-magnitude relationship model normalized by 500a is established and based on the relationship between the upper limit of maximum magnitude M u and a t/b,the maximum magnitudes of the sea section of the Haihe river fault and the Haiyi fault are calculated.Then Poisson probability model is adopted and the quantitative parameters,such as the maximum magnitude,occurrence probability,recurrence cycle of the faults in the south Tianjin offshore areas in the coming 50~200a,are calculated.