Measurements of seafloor asymmetry at about 360 000 pairs of conjugate points along 1250 profiles across the mid-Atlantic Ridge (MAR) provide new constraints on models for the upwelling of the buoyant asthenosphere. T...Measurements of seafloor asymmetry at about 360 000 pairs of conjugate points along 1250 profiles across the mid-Atlantic Ridge (MAR) provide new constraints on models for the upwelling of the buoyant asthenosphere. The sign and amplitude of the asymmetry vary systematically and are functions of the distance between the spreading center and the location of the inferred location of maximum regional buoyancy (LMRB) in the asthenosphere. The LMRB is a smooth line derived from the observed asymmetry and is more centered at the regional topographic high than the spreading center. These observations are best explained by active upwelling of the underlying buoyant asthenosphere rather than by pressure-release melting.展开更多
The octupole deformations and other ground state properties of even-even Rn, Th and U isotopes are investigated systematically within the framework of the reflection asymmetric relativistic mean field (RAS-RMF) mode...The octupole deformations and other ground state properties of even-even Rn, Th and U isotopes are investigated systematically within the framework of the reflection asymmetric relativistic mean field (RAS-RMF) model. The calculation results reproduce the binding energies and the quadrupole deformations well. The calculation results indicate these nuclei at ground states evolve from neaxly-spherical (N = 130) shape to quadrupole deformation shape with the increase of the neutron number. It is also found that among the Rn isotopes, only^222,224 Rn axe oetupole deformed and the octupole deformations for them are small. However, more nuclei (N ≌ 134 148) in Th and U isotopes are octupole deformed and the octupole deformations for some of them are significant (|β3|- 0.1 or even larger).展开更多
基金supported by the U.S.National Science Foundation under contract No.0207466.
文摘Measurements of seafloor asymmetry at about 360 000 pairs of conjugate points along 1250 profiles across the mid-Atlantic Ridge (MAR) provide new constraints on models for the upwelling of the buoyant asthenosphere. The sign and amplitude of the asymmetry vary systematically and are functions of the distance between the spreading center and the location of the inferred location of maximum regional buoyancy (LMRB) in the asthenosphere. The LMRB is a smooth line derived from the observed asymmetry and is more centered at the regional topographic high than the spreading center. These observations are best explained by active upwelling of the underlying buoyant asthenosphere rather than by pressure-release melting.
基金Supported by National Natural Science Foundation of China under Grant Nos.10975100, 10979024, 10705014, and 10811130562The Knowledge Innovation Project of the Chinese Academy of Sciences under Grant No.KJCX3-SYW-No2Major State Basic Research Development Program under Grant No.2007CB815000
文摘The octupole deformations and other ground state properties of even-even Rn, Th and U isotopes are investigated systematically within the framework of the reflection asymmetric relativistic mean field (RAS-RMF) model. The calculation results reproduce the binding energies and the quadrupole deformations well. The calculation results indicate these nuclei at ground states evolve from neaxly-spherical (N = 130) shape to quadrupole deformation shape with the increase of the neutron number. It is also found that among the Rn isotopes, only^222,224 Rn axe oetupole deformed and the octupole deformations for them are small. However, more nuclei (N ≌ 134 148) in Th and U isotopes are octupole deformed and the octupole deformations for some of them are significant (|β3|- 0.1 or even larger).