期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于三目视觉系统的车辆导引方法 被引量:4
1
作者 王军 柳红岩 《计算机应用》 CSCD 北大核心 2014年第6期1762-1764,1773,共4页
为使车辆在非结构化地形环境中实现自动导引,提出一种基于三目立体视觉系统的自适应地形分类方法。该地形分类方法利用三目视觉系统采集地形的几何信息与颜色信息,方法中的几何分类器通过分析采集的数据对地形进行初步分类,而颜色分类... 为使车辆在非结构化地形环境中实现自动导引,提出一种基于三目立体视觉系统的自适应地形分类方法。该地形分类方法利用三目视觉系统采集地形的几何信息与颜色信息,方法中的几何分类器通过分析采集的数据对地形进行初步分类,而颜色分类器则在几何分类器的基础上对不同地形进行颜色标注。分类过程中,为使车辆能够有效地适应变化的地形环境,需根据分类所得新数据实时更新原有分类数据。该地形分类方法最终把可行驶的地面和不可行驶的任何地形作出分类并用不同颜色标注。从实验结果可看出,该方法可对实验中三目立体视觉系统所拍摄的地形作出准确分类。 展开更多
关键词 自动引导 三目立体视觉系统 自适应分类 地形分类方法
下载PDF
Combining Spectral with Texture Features into Objectoriented Classification in Mountainous Terrain Using Advanced Land Observing Satellite Image
2
作者 LIU En-qin ZHOU Wan-cun +2 位作者 ZHOU Jie-ming SHAO Huai-yong YANG Xin 《Journal of Mountain Science》 SCIE CSCD 2013年第5期768-776,共9页
Most existing classification studies use spectral information and those were adequate for cities or plains. This paper explores classification method suitable for the ALOS (Advanced Land Observing Satellite) in moun... Most existing classification studies use spectral information and those were adequate for cities or plains. This paper explores classification method suitable for the ALOS (Advanced Land Observing Satellite) in mountainous terrain. Mountainous terrain mapping using ALOS image faces numerous challenges. These include spectral confusion with other land cover features, topographic effects on spectral signatures (such as shadow). At first, topographic radiometric correction was carried out to remove the illumination effects of topography. In addition to spectral features, texture features were used to assist classification in this paper. And texture features extracted based on GLCM (Gray Level Co- occurrence Matrix) were not only used for segmentation, but also used for building rules. The performance of the method was evaluated and compared with Maximum Likelihood Classification (MLC). Results showed that the object-oriented method integrating spectral and texture features has achieved overall accuracy of 85.73% with a kappa coefficient of 0.824, which is 13.48% and o.145 respectively higher than that got by MLC method. It indicated that texture features can significantly improve overall accuracy, kappa coefficient, and the classification precision of existing spectrum confusion features. Object-oriented method Integrating spectral and texture features is suitable for land use extraction of ALOS image in mountainous terrain. 展开更多
关键词 Texture features Object-orientedclassification Land use MOUNTAIN ALOS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部