Based on numerical simulation, this study explored the characteristics and interactions of surface sensible heating and atmospheric latent heating over the main part of the Tibetan Plateau, i.e., terrain at elevations...Based on numerical simulation, this study explored the characteristics and interactions of surface sensible heating and atmospheric latent heating over the main part of the Tibetan Plateau, i.e., terrain at elevations >2 km in summer. The impacts of these two types of heating on local vertical motion and monsoonal meridional circulation were compared. Theoretical analysis and numerical experimentation demonstrated that by changing the configuration of the upper-tropospheric air temperature and circulation, the two types of heating could generate both minimum absolute vorticity and abnormal potential vorticity forcing near the tropopause, enhance the meridional circulation of the Asian summer monsoon, and produce an eastward-propagating Rossby wave train within the mid-latitude westerly flow. Consequently, the manifestations of these features were shown to influence the circulation of the Northern Hemisphere.展开更多
基金supported by the Nsyionsl Natural Science Foundation of China (Grant Nos. 41275088, 91437219 & 41328006)the Special Fund for Public Welfare Industry (Meteorology) administered by the Chinese Ministry of Finance and the Ministry of Science and Technology (Grant No. GYHY201406001)
文摘Based on numerical simulation, this study explored the characteristics and interactions of surface sensible heating and atmospheric latent heating over the main part of the Tibetan Plateau, i.e., terrain at elevations >2 km in summer. The impacts of these two types of heating on local vertical motion and monsoonal meridional circulation were compared. Theoretical analysis and numerical experimentation demonstrated that by changing the configuration of the upper-tropospheric air temperature and circulation, the two types of heating could generate both minimum absolute vorticity and abnormal potential vorticity forcing near the tropopause, enhance the meridional circulation of the Asian summer monsoon, and produce an eastward-propagating Rossby wave train within the mid-latitude westerly flow. Consequently, the manifestations of these features were shown to influence the circulation of the Northern Hemisphere.