The effects of the different landforms of the cutting leeward on the aerodynamic performance of high-speed trains were analyzed based on the three-dimensional, steady, and incompressible Navier-Stokes equation and k-e...The effects of the different landforms of the cutting leeward on the aerodynamic performance of high-speed trains were analyzed based on the three-dimensional, steady, and incompressible Navier-Stokes equation and k-e double-equation turbulent model. Results show that aerodynamic forces increase with the cutting leeward slope decreasing. The maximum adding value of lateral force, lift force, and overturning moment are 147%, 44.3%, and 107%, respectively, when the slope varies from 0.67 to -0.67, and the changes in the cutting leeward landform have more effects on the aerodynamic performance when the train is running in the line No. 2 than in the line No. 1. The aerodynamic forces, except the resistance force, sharply increase with the slope depth decreasing. By comparing the circumstance of the cutting depth H=-8 m with that of H=8 m, the resistance force, lateral force, lift force, and overturning moment increase by 26.0%, 251%, 67.3% and 177%, respectively. With the wind angle increasing, the resistance force is nonmonotonic, whereas other forces continuously rise. Under three special landforms, the changes in the law of aerodynamic forces with the wind angle are almost similar to one another.展开更多
Rock burst is a severe disaster in mining and underground engineering,and it is important to predict the rock burst risk for minimizing the loss during the constructing process.The rock burst proneness was connected w...Rock burst is a severe disaster in mining and underground engineering,and it is important to predict the rock burst risk for minimizing the loss during the constructing process.The rock burst proneness was connected with the acoustic emission(AE) parameter in this work,which contributes to predicting the rock burst risk using AE technique.Primarily,a rock burst proneness index is proposed,and it just depends on the heterogeneous degree of rock material.Then,the quantificational formula between the value of rock burst proneness index and the accumulative AE counts in rock sample under uniaxial compression with axial strain increases is developed.Finally,three kinds of rock samples,i.e.,granite,limestone and sandstone are tested about variation of the accumulative AE counts under uniaxial compression,and the test data are fitted well with the theoretic formula.展开更多
基金Project(U1134203) supported by the National Natural Science Foundation of ChinaProject(132014) supported by Fok Ying Tong Education Foundation,ChinaProject(2011G006) supported by the Technological Research and Development Program of the Ministry of Railways,China
文摘The effects of the different landforms of the cutting leeward on the aerodynamic performance of high-speed trains were analyzed based on the three-dimensional, steady, and incompressible Navier-Stokes equation and k-e double-equation turbulent model. Results show that aerodynamic forces increase with the cutting leeward slope decreasing. The maximum adding value of lateral force, lift force, and overturning moment are 147%, 44.3%, and 107%, respectively, when the slope varies from 0.67 to -0.67, and the changes in the cutting leeward landform have more effects on the aerodynamic performance when the train is running in the line No. 2 than in the line No. 1. The aerodynamic forces, except the resistance force, sharply increase with the slope depth decreasing. By comparing the circumstance of the cutting depth H=-8 m with that of H=8 m, the resistance force, lateral force, lift force, and overturning moment increase by 26.0%, 251%, 67.3% and 177%, respectively. With the wind angle increasing, the resistance force is nonmonotonic, whereas other forces continuously rise. Under three special landforms, the changes in the law of aerodynamic forces with the wind angle are almost similar to one another.
基金Project(2010CB226804)supported by the National Basic Research Program(973 Program)of ChinaProject(11202108)supported by the National Natural Science Foundation of ChinaProject(BK20130189)supported by the Natural Science Foundation of Jiangsu Province,China
文摘Rock burst is a severe disaster in mining and underground engineering,and it is important to predict the rock burst risk for minimizing the loss during the constructing process.The rock burst proneness was connected with the acoustic emission(AE) parameter in this work,which contributes to predicting the rock burst risk using AE technique.Primarily,a rock burst proneness index is proposed,and it just depends on the heterogeneous degree of rock material.Then,the quantificational formula between the value of rock burst proneness index and the accumulative AE counts in rock sample under uniaxial compression with axial strain increases is developed.Finally,three kinds of rock samples,i.e.,granite,limestone and sandstone are tested about variation of the accumulative AE counts under uniaxial compression,and the test data are fitted well with the theoretic formula.