期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于地理加权回归的地形平缓区土壤有机质空间建模 被引量:22
1
作者 赵明松 刘斌寅 +2 位作者 卢宏亮 李德成 张甘霖 《农业工程学报》 EI CAS CSCD 北大核心 2019年第20期102-110,共9页
气候变化效应评估、土壤固碳潜力和肥力管理等,迫切需要详尽的土壤有机质(soil organic matter,SOM)空间分布信息。该文以江苏省第二次土壤普查的1519个典型土壤剖面的表层(0~20 cm)SOM含量为例,选择1217个样本为建模集,302个为验证集,... 气候变化效应评估、土壤固碳潜力和肥力管理等,迫切需要详尽的土壤有机质(soil organic matter,SOM)空间分布信息。该文以江苏省第二次土壤普查的1519个典型土壤剖面的表层(0~20 cm)SOM含量为例,选择1217个样本为建模集,302个为验证集,选取年均温度、年均降雨、物理性黏粒和土壤pH值等因子进行SOM的地理加权回归(geographically weighted regression,GWR)建模。从建模集中分别随机抽取100%(1217个)、80%(973个)、60%(730个)、40%(486个),20%(243个)的样点,对比不同样点数量下GWR和传统全局回归模型的精度差异,并选择最优模型进行SOM空间预测制图。结果表明:1)江苏省SOM含量在不同空间尺度上存在极显著的空间自相关性。不同样点数量的建模集的全局自相关性和局部空间自相关聚类图结果相似。全局Moran’s I值介于0.25~0.61(P<0.001)。SOM含量空间分布以空间聚集特征为主,“高-高”聚集区主要分布在苏中和苏南地区,“低-低”聚集区主要分布在苏北地区。2)GWR建模结果均优于传统的全局回归建模,其残差在不同的空间尺度上均不存在空间自相关性。不同建模集的GWR的R2 adj较全局建模均提高0.15~0.20,其AIC和RSS均比全局模型有大幅降低,为56.08~360.19和17.40~76.67。不同建模样本数量的GWR模型对SOM的解释能力差异较小。3)建模样点数量(除建模样本n=243)对GWR预测制图结果的精度影响不大,RMSE介于5.56~5.75 g/kg之间,MAE介于3.87~4.05 g/kg之间,R2介于0.52~0.48之间,均优于全部建模样点的普通克里格插值验证结果。该研究可为样点数较少的省级尺度地区SOM空间建模与制图提供借鉴。 展开更多
关键词 土壤 有机质 模型 地理加权回归 数字土壤制图 地形平缓区 江苏省
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部