To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environme...To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.展开更多
Spatial distribution of organic carbon in soils is difficult to estimatebecause of inherent spatial variability and insufficient data. A soil-landscape model for a region,based on 151 samples for parent material and t...Spatial distribution of organic carbon in soils is difficult to estimatebecause of inherent spatial variability and insufficient data. A soil-landscape model for a region,based on 151 samples for parent material and topographic factors, was established using a GISspatial analysis technique and a digital elevation model (DEM) to reveal spatial distributioncharacteristics of soil organic carbon (SOC). Correlations between organic carbon and topographicfactors were analyzed and a regression model was established to predict SOC content. Results forsurface soils (0-20 cm) showed that the average SOC content was 12.8 g kg^(-1), with the SOC contentbetween 6 and 12 g kg^(-1) occupying the largest area and SOC over 24 g kg^(-1) the smallest. Also,soils derived from phyllite were the highest in the SOC content and area, while soils developed onpurple shale the lowest. Although parent material, elevation, and slope exposure were allsignificant topographic variables (P < 0.01), slope exposure had the highest correlation to SOCcontent (r = 0.66). Using a multiple regression model (R^2 = 0.611) and DEM (with a 30 m X 30 mgrid), spatial distribution of SOC could be forecasted.展开更多
Land cultivation and tillage process, and their consequent impacts on soil erosion, have been criticized as the main cause of degradation of land or soil quality. However, purple soils, classified as Regosols in FAO T...Land cultivation and tillage process, and their consequent impacts on soil erosion, have been criticized as the main cause of degradation of land or soil quality. However, purple soils, classified as Regosols in FAO Taxonomy or Entisols in USDA Taxonomy, are formed from purple rocks of the Trias- Cretaceous system, have been developed or at least accelerated the development due to continual tillage operation, especially digging and ridging. The present study took micromorphological investigation on the sedimentary rocks and the soils under different operations of tillage. Results show that the purple rock of Feixiangguan Formation of the Trias system (Tlf) is the easiest to physical weathering and the most fertile soil material enriched in nutrients, and it has been, therefore, mostly cultivated and intensively tilled around the year. It has the fastest soil formation rate. Soil formation rate in the cropland with conventional tillage is higher than that in the forestiand and the grassland. It implies that the artificial brokenness and tillage disturbance play a great role in physical weathering and initiating soil formation processes.展开更多
Through the Fourier-Bessel series expansion of wave functions,the analytical solution to the two-dimensional scattering problem of incidental plane P waves by circular-arc canyon topography with different depth-to-wid...Through the Fourier-Bessel series expansion of wave functions,the analytical solution to the two-dimensional scattering problem of incidental plane P waves by circular-arc canyon topography with different depth-to-width ratio is deduced.Unlike other existing analytical solutions,in order to ensure that the analytical solution is valid for higher frequency incident waves,the asymptotic properties of cylindrical functions are in this paper introduced to directly determine the unknown coefficients of scattering waves,avoiding the solution of linear equation systems and corresponding numerical issues,which in turn expand the frequency band in which the analytical solution is valid.Comparison with other existing analytical solutions demonstrates that the proposed analytical solution is correct.Furthermore,the scattering effects of a circular-arc canyon on the incident plane P wave are analyzed in a comparatively broad frequency band.展开更多
Based on engineering practices of Wuyang Coal Mine, we carried out X-ray diffract researches on No. 3 coal; and the rocks of its roof and floor by XRD meter, and simulated the interactive effect of the surrounding roc...Based on engineering practices of Wuyang Coal Mine, we carried out X-ray diffract researches on No. 3 coal; and the rocks of its roof and floor by XRD meter, and simulated the interactive effect of the surrounding rock deformation by FLAC2DS.0 numerical simulation software under the condition of different tunneling method of multimine roadway in parallel. The internal structures of the surrounding rocks of 76 belt roadway were monitored by borehole observation instruments: and then, we analyzed the reason of fhilure and deformation of surrounding rocks of several rise entry, and proposed the technical mea- sures for controlling interactive effect of several rise entry surrounding rock deformation at last. For the thickness seam rise roadway, two conclusions were drawn: one is that the co-deformation among roadway groups mainly reflect on that both shear failure and deformation in coal pillar among roadways have decreased the width of pillar core region and clamping action of coal pillar to roof strata, increased the actual span of roof strata, intensified the flexural failure of roof strata and prized the bed separation of roof deep rock strata. The other conclusion is that the factors controlling the interactive deformation among roadways is obvious when appropriate re-adjustment in construction sequence of the tunneling of multimine parallel roadways because the construction sequence among roadways also has great effects on deformation of the surrounding rock in roadway.展开更多
The Geology and Landform of Hoh Xil and Its Evolution This book is edited by Li Jianghai,Wencheng,and Liu Chiheng,and narrates the geology and landform of Hoh Xil.With a large number of photos,this book provides reade...The Geology and Landform of Hoh Xil and Its Evolution This book is edited by Li Jianghai,Wencheng,and Liu Chiheng,and narrates the geology and landform of Hoh Xil.With a large number of photos,this book provides readers with detailed information about topographical features including highland glaciers,lakes,rivers,and plains.Experts apply remote sensing technology,geophysics,and on-site investigations to study Hoh Xil’s structural makeup,model its fractured terrain,and perform a myriad of other analyses.展开更多
The rapid increase in the aging population prompts the development of wearable devices and sophisticated robots. With their ability to collect complex information about their surroundings via e-skins, robots could per...The rapid increase in the aging population prompts the development of wearable devices and sophisticated robots. With their ability to collect complex information about their surroundings via e-skins, robots could perform more dynamic and variable tasks such as rescue missions or caring for the elderly. In this paper, we present a new concept of utilizing a very simple, highly flexible and stretchable capacitor sensor array, that can be attached on the surface of a retractable robot hand to realize three functions: determining the location, shape, and pressure of an object. This adaptive sensing system is accomplished using capacitors connected by aligned carbon nanotube(CNT) films constructed on an elastomer dielectric material, which can reduce the requirement on the accuracy of the machine vision system. This study has a very broad application in the manufacture of intelligent software robots.展开更多
[Abstract] Objective: By studying the mode and morphologic character of high fall injuries on the scene, and exploring the injury situation of different heights, different fall ways and postures, to provide a referen...[Abstract] Objective: By studying the mode and morphologic character of high fall injuries on the scene, and exploring the injury situation of different heights, different fall ways and postures, to provide a reference for the foren- sic identification of high fall injury. Methods: All the high fall cases were statistically analysed according to their gender, age, ground-touching posture, fall height, site and type of the injury. Results: Among 134 high fall cases, 98 were male and 36 were female with the age ranging from 2-71 years (37.6 +16.9 on average), in which, 10-60 years old group con- sisted of 110 cases (82%). Most cases fell from windows orroofs (73%) and the touching objects were cement ground or shaft bottom of elevators. Among these cases, head injury was generally serious, followed by chest and abdominal injuries. The morphologic changes depend upon the height, nature, as well as the posture at the point while the body touches the ground. Conclusion: Morphologic study of high fall injury assists medicolegal physicians to make correct identifica- tions of the cause and nature of high fall injuries.展开更多
基金Pre-Research Program of General Armament Department during the11th Five-Year Plan Period (No51309020503)the National Defense Basic Research Program of China (973Program)(No973-61334)+1 种基金the National Natural Science Foundation of China(No50575042)Specialized Research Fund for the Doctoral Program of Higher Education (No20050286026)
文摘To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.
基金Project supported by the National Key Basic Research Support Foundation of China (No. G1999011810) the Key Innovation Project of Chinese Academy of Sciences (No. KZCX1-SW01-19) the Frontier Project of the Chinese Academy of Sciences (No. ISSASIP0201
文摘Spatial distribution of organic carbon in soils is difficult to estimatebecause of inherent spatial variability and insufficient data. A soil-landscape model for a region,based on 151 samples for parent material and topographic factors, was established using a GISspatial analysis technique and a digital elevation model (DEM) to reveal spatial distributioncharacteristics of soil organic carbon (SOC). Correlations between organic carbon and topographicfactors were analyzed and a regression model was established to predict SOC content. Results forsurface soils (0-20 cm) showed that the average SOC content was 12.8 g kg^(-1), with the SOC contentbetween 6 and 12 g kg^(-1) occupying the largest area and SOC over 24 g kg^(-1) the smallest. Also,soils derived from phyllite were the highest in the SOC content and area, while soils developed onpurple shale the lowest. Although parent material, elevation, and slope exposure were allsignificant topographic variables (P < 0.01), slope exposure had the highest correlation to SOCcontent (r = 0.66). Using a multiple regression model (R^2 = 0.611) and DEM (with a 30 m X 30 mgrid), spatial distribution of SOC could be forecasted.
基金supported by the CAS West-Developing Initiative (Grant No. KZCX2-XB2-07)the Key Technologies R & D Program of China (Grant No. 2008BAD98B04)
文摘Land cultivation and tillage process, and their consequent impacts on soil erosion, have been criticized as the main cause of degradation of land or soil quality. However, purple soils, classified as Regosols in FAO Taxonomy or Entisols in USDA Taxonomy, are formed from purple rocks of the Trias- Cretaceous system, have been developed or at least accelerated the development due to continual tillage operation, especially digging and ridging. The present study took micromorphological investigation on the sedimentary rocks and the soils under different operations of tillage. Results show that the purple rock of Feixiangguan Formation of the Trias system (Tlf) is the easiest to physical weathering and the most fertile soil material enriched in nutrients, and it has been, therefore, mostly cultivated and intensively tilled around the year. It has the fastest soil formation rate. Soil formation rate in the cropland with conventional tillage is higher than that in the forestiand and the grassland. It implies that the artificial brokenness and tillage disturbance play a great role in physical weathering and initiating soil formation processes.
基金sponsored by the National Key Technology R&D Program (Grant No. 2006BAC13B02)the National Natural Science Foundation (Grant No.50608066)the Joint Earthquake Science Foundaton (Grant No. A07045),China
文摘Through the Fourier-Bessel series expansion of wave functions,the analytical solution to the two-dimensional scattering problem of incidental plane P waves by circular-arc canyon topography with different depth-to-width ratio is deduced.Unlike other existing analytical solutions,in order to ensure that the analytical solution is valid for higher frequency incident waves,the asymptotic properties of cylindrical functions are in this paper introduced to directly determine the unknown coefficients of scattering waves,avoiding the solution of linear equation systems and corresponding numerical issues,which in turn expand the frequency band in which the analytical solution is valid.Comparison with other existing analytical solutions demonstrates that the proposed analytical solution is correct.Furthermore,the scattering effects of a circular-arc canyon on the incident plane P wave are analyzed in a comparatively broad frequency band.
基金provided by the National Natural Science Foundation of China (No. 50674046)the Open Foundation of Hunan Provincial Key Laboratory of Safe Mining Techniques of Coal Mines of China (No. 200803)
文摘Based on engineering practices of Wuyang Coal Mine, we carried out X-ray diffract researches on No. 3 coal; and the rocks of its roof and floor by XRD meter, and simulated the interactive effect of the surrounding rock deformation by FLAC2DS.0 numerical simulation software under the condition of different tunneling method of multimine roadway in parallel. The internal structures of the surrounding rocks of 76 belt roadway were monitored by borehole observation instruments: and then, we analyzed the reason of fhilure and deformation of surrounding rocks of several rise entry, and proposed the technical mea- sures for controlling interactive effect of several rise entry surrounding rock deformation at last. For the thickness seam rise roadway, two conclusions were drawn: one is that the co-deformation among roadway groups mainly reflect on that both shear failure and deformation in coal pillar among roadways have decreased the width of pillar core region and clamping action of coal pillar to roof strata, increased the actual span of roof strata, intensified the flexural failure of roof strata and prized the bed separation of roof deep rock strata. The other conclusion is that the factors controlling the interactive deformation among roadways is obvious when appropriate re-adjustment in construction sequence of the tunneling of multimine parallel roadways because the construction sequence among roadways also has great effects on deformation of the surrounding rock in roadway.
文摘The Geology and Landform of Hoh Xil and Its Evolution This book is edited by Li Jianghai,Wencheng,and Liu Chiheng,and narrates the geology and landform of Hoh Xil.With a large number of photos,this book provides readers with detailed information about topographical features including highland glaciers,lakes,rivers,and plains.Experts apply remote sensing technology,geophysics,and on-site investigations to study Hoh Xil’s structural makeup,model its fractured terrain,and perform a myriad of other analyses.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFB0307000-01)the National Natural Science Foundation of China(Grant No.91648109)the Priority Academic Program Development of Jiangsu Higher Education Institutions,333 Project of Jiangsu Province
文摘The rapid increase in the aging population prompts the development of wearable devices and sophisticated robots. With their ability to collect complex information about their surroundings via e-skins, robots could perform more dynamic and variable tasks such as rescue missions or caring for the elderly. In this paper, we present a new concept of utilizing a very simple, highly flexible and stretchable capacitor sensor array, that can be attached on the surface of a retractable robot hand to realize three functions: determining the location, shape, and pressure of an object. This adaptive sensing system is accomplished using capacitors connected by aligned carbon nanotube(CNT) films constructed on an elastomer dielectric material, which can reduce the requirement on the accuracy of the machine vision system. This study has a very broad application in the manufacture of intelligent software robots.
基金The paper was supported by the National Natural Science Foundation of China,the Natural Science Foundation of Chongqing of China,the Key Projects Foundation of the Ministry of Public Security
文摘[Abstract] Objective: By studying the mode and morphologic character of high fall injuries on the scene, and exploring the injury situation of different heights, different fall ways and postures, to provide a reference for the foren- sic identification of high fall injury. Methods: All the high fall cases were statistically analysed according to their gender, age, ground-touching posture, fall height, site and type of the injury. Results: Among 134 high fall cases, 98 were male and 36 were female with the age ranging from 2-71 years (37.6 +16.9 on average), in which, 10-60 years old group con- sisted of 110 cases (82%). Most cases fell from windows orroofs (73%) and the touching objects were cement ground or shaft bottom of elevators. Among these cases, head injury was generally serious, followed by chest and abdominal injuries. The morphologic changes depend upon the height, nature, as well as the posture at the point while the body touches the ground. Conclusion: Morphologic study of high fall injury assists medicolegal physicians to make correct identifica- tions of the cause and nature of high fall injuries.