Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the...Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the sustainable development and national food security to study the spatial and temporal variation of cultivated land in Northeast China under future climate scenarios. In this study, based on data of land use, natural environment and social-economy, dynamics of land system(DLS) model was used to to simulate the spatial distribution and changing trends of cultivated land in the typical areas of reclamation and returning cultivated land to forest or pastures in Northeast China during 2010-2030 under land use planning scenario and representative concentration pathways(RCPs) scenarios quantitatively.The results showed that the area of cultivated land had an overall decreasing trend under the land use planning scenario, but the area of upland field increased slightly from 2000 to 2010 and then declined greatly, while the area of paddy field continuously declined from 2000 to 2030. Under the Asia-Pacific Integrated model(AIM)scenario, the total area of cultivated land had a tendency to increase considerably,with the upland field expanding more obviously and the paddy field declining slightly.In addition, the cultivated land showed a greater decreasing trend under the model for energy supply strategy alternatives and their general environmental impact(MESSAGE) scenario compared to the land use planning scenario. Moreover, analysis on the conversion between different land use types indicated that the reclamation and returning cultivated land to forests or pastures was likely to continue under future scenarios, but the frequency of occurrence could decrease as the time goes by. The conclusions can provide significant decision-making information for the rational agricultural planning and cultivated land protection in Northeast China to adapt to the climate change.展开更多
The paper deals with the impact of land use changes on water regime. An assessment was carried out in order to determine the extent to which the main components of the water balance on the experimental catchment Vsemi...The paper deals with the impact of land use changes on water regime. An assessment was carried out in order to determine the extent to which the main components of the water balance on the experimental catchment Vseminka have been influenced by land use changes (region Vsetinske Hills, the Czech Republic). For this reason, the water balance model WBCM-5 was implemented for the period of 30 years in a daily step, with particular focus on the simulation of the components of direct runoff and of subsurface water recharge. In the selected years of the period 1980-2009, major changes were made in land use and significant fluctuation of rainfall-runoff regimes were observed (e.g. dry year 1992, flood year 1997 and normal year 2009). After WBCM-5 parameter calibration it was observed that some water balance components can change in relation to substantial land use changes, even up to dozens of percent in a balance-consideration, i.e. in daily, monthly and yearly or decadal values, specifically as far as the components of interception and also of direct runoff and of subsurface water recharge are concerned. However, a different situation appeared during the investigation of significant short-term rainfall-runoff processes. There were about seven real flood events during the same period on the same catchment which were analysed using the KINFIL-2 model (time step 0.5 hr). Land use change, positive or negative scenarios, were also analysed during this period. As opposed to long-term water balance analyses, only a 10% difference in the hydrograph peak and volume was observed. In summary, the authors have shown that it is always important to distinguish a possible land use change impact on either long-term balance or short-term runoff. Otherwise, as often found in over simplified commentaries on flood events in the mass media, the actual impact of land use changes on water regime may be misunderstood.展开更多
Beijing Municipal Administrative Center(Beijing MC)in Tongzhou District has inherited the non-capital core functions of Beijing’s central urban area,and its rapid construction and development urgently require a scien...Beijing Municipal Administrative Center(Beijing MC)in Tongzhou District has inherited the non-capital core functions of Beijing’s central urban area,and its rapid construction and development urgently require a scientific understanding of the pattern of land use evolution in the region.This paper analyzes the pattern of land use evolution in Tongzhou District over the past 40 years,from 1980 to 2020.According to the historical evolutionary characteristics of land use and urban development planning goals,combined with the driving factors of cultural tourism development,the Future Land-use Simulation(FLUS)model is used to simulate the spatial distribution of land use in Beijing MC(Tongzhou District)in 2035 under three scenarios of urbanization acceleration,deceleration and sustainable development.The results show three major trends.(1)Beijing MC(Tongzhou District)is dominated by urban development and construction.During the high-speed urbanization stage from 1980 to 2010,the urban expansion pattern of“along the Sixth Ring Road and along the Grand Canal”was formed.During the low-speed urbanization stage from 2010 to 2020,the land distribution was stable,and Tongzhou District formed a pattern of urban-rural differentiation and land intensification from northwest to southeast.As a typical area of Tongzhou District’s urbanization,Beijing MC has the same characteristics of the temporal and spatial evolution as Tongzhou as a whole.(2)By 2035,there are significant differences in land use among the three scenarios with respect to the magnitude of change and spatial distribution.The area and distribution of ecological land under the urban sustainable development scenario are optimal,which is conducive to the realization of sustainable urban development.In analyzing the degree of conformity with the three Beijing MC zoning plans,the prediction simulation under the sustainable development scenario is highly consistent with the land use of the“Beijing Municipal Administrative Center Regulatory Detailed Planning(Block Level)(2016–2035)”(hereinafter referred to as“Planning”)issued by the municipal government.However,there are certain deviations between the simulation predictions in the cultural tourism function area and the livable living scenery area and the corresponding“Planning”expectations.During the urban construction process,the internal ecological land area still needs to be increased.(3)Tongzhou District may lack a close connection between the urban and rural areas in the southeast.Potential risks such as the imbalance in the development of northern and southern townships require further attention in the development process.The prediction and simulation results of the model can provide certain data and methodological support for the construction of a harmonious and livable city in Beijing MC(Tongzhou District).展开更多
基金Supported by the Major Research Project of National Natural Science Foundation Committee(91325302)China Postdoctoral Foundation(2014M560110)Hebei Social Science Foundation(HB15GL087)~~
文摘Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the sustainable development and national food security to study the spatial and temporal variation of cultivated land in Northeast China under future climate scenarios. In this study, based on data of land use, natural environment and social-economy, dynamics of land system(DLS) model was used to to simulate the spatial distribution and changing trends of cultivated land in the typical areas of reclamation and returning cultivated land to forest or pastures in Northeast China during 2010-2030 under land use planning scenario and representative concentration pathways(RCPs) scenarios quantitatively.The results showed that the area of cultivated land had an overall decreasing trend under the land use planning scenario, but the area of upland field increased slightly from 2000 to 2010 and then declined greatly, while the area of paddy field continuously declined from 2000 to 2030. Under the Asia-Pacific Integrated model(AIM)scenario, the total area of cultivated land had a tendency to increase considerably,with the upland field expanding more obviously and the paddy field declining slightly.In addition, the cultivated land showed a greater decreasing trend under the model for energy supply strategy alternatives and their general environmental impact(MESSAGE) scenario compared to the land use planning scenario. Moreover, analysis on the conversion between different land use types indicated that the reclamation and returning cultivated land to forests or pastures was likely to continue under future scenarios, but the frequency of occurrence could decrease as the time goes by. The conclusions can provide significant decision-making information for the rational agricultural planning and cultivated land protection in Northeast China to adapt to the climate change.
文摘The paper deals with the impact of land use changes on water regime. An assessment was carried out in order to determine the extent to which the main components of the water balance on the experimental catchment Vseminka have been influenced by land use changes (region Vsetinske Hills, the Czech Republic). For this reason, the water balance model WBCM-5 was implemented for the period of 30 years in a daily step, with particular focus on the simulation of the components of direct runoff and of subsurface water recharge. In the selected years of the period 1980-2009, major changes were made in land use and significant fluctuation of rainfall-runoff regimes were observed (e.g. dry year 1992, flood year 1997 and normal year 2009). After WBCM-5 parameter calibration it was observed that some water balance components can change in relation to substantial land use changes, even up to dozens of percent in a balance-consideration, i.e. in daily, monthly and yearly or decadal values, specifically as far as the components of interception and also of direct runoff and of subsurface water recharge are concerned. However, a different situation appeared during the investigation of significant short-term rainfall-runoff processes. There were about seven real flood events during the same period on the same catchment which were analysed using the KINFIL-2 model (time step 0.5 hr). Land use change, positive or negative scenarios, were also analysed during this period. As opposed to long-term water balance analyses, only a 10% difference in the hydrograph peak and volume was observed. In summary, the authors have shown that it is always important to distinguish a possible land use change impact on either long-term balance or short-term runoff. Otherwise, as often found in over simplified commentaries on flood events in the mass media, the actual impact of land use changes on water regime may be misunderstood.
基金The National Natural Science Foundation of China(31470518)The Project Supported by Institute of Culture and Tourism Development of Beijing Technology and Business University(202106104)。
文摘Beijing Municipal Administrative Center(Beijing MC)in Tongzhou District has inherited the non-capital core functions of Beijing’s central urban area,and its rapid construction and development urgently require a scientific understanding of the pattern of land use evolution in the region.This paper analyzes the pattern of land use evolution in Tongzhou District over the past 40 years,from 1980 to 2020.According to the historical evolutionary characteristics of land use and urban development planning goals,combined with the driving factors of cultural tourism development,the Future Land-use Simulation(FLUS)model is used to simulate the spatial distribution of land use in Beijing MC(Tongzhou District)in 2035 under three scenarios of urbanization acceleration,deceleration and sustainable development.The results show three major trends.(1)Beijing MC(Tongzhou District)is dominated by urban development and construction.During the high-speed urbanization stage from 1980 to 2010,the urban expansion pattern of“along the Sixth Ring Road and along the Grand Canal”was formed.During the low-speed urbanization stage from 2010 to 2020,the land distribution was stable,and Tongzhou District formed a pattern of urban-rural differentiation and land intensification from northwest to southeast.As a typical area of Tongzhou District’s urbanization,Beijing MC has the same characteristics of the temporal and spatial evolution as Tongzhou as a whole.(2)By 2035,there are significant differences in land use among the three scenarios with respect to the magnitude of change and spatial distribution.The area and distribution of ecological land under the urban sustainable development scenario are optimal,which is conducive to the realization of sustainable urban development.In analyzing the degree of conformity with the three Beijing MC zoning plans,the prediction simulation under the sustainable development scenario is highly consistent with the land use of the“Beijing Municipal Administrative Center Regulatory Detailed Planning(Block Level)(2016–2035)”(hereinafter referred to as“Planning”)issued by the municipal government.However,there are certain deviations between the simulation predictions in the cultural tourism function area and the livable living scenery area and the corresponding“Planning”expectations.During the urban construction process,the internal ecological land area still needs to be increased.(3)Tongzhou District may lack a close connection between the urban and rural areas in the southeast.Potential risks such as the imbalance in the development of northern and southern townships require further attention in the development process.The prediction and simulation results of the model can provide certain data and methodological support for the construction of a harmonious and livable city in Beijing MC(Tongzhou District).