The Paris Agreement introduced a 1.5 ℃ target to control the rise in global temperature, but clear arrangements for feasible implementation pathways were not made. Achieving the 1.5 ℃ target imposes high requirement...The Paris Agreement introduced a 1.5 ℃ target to control the rise in global temperature, but clear arrangements for feasible implementation pathways were not made. Achieving the 1.5 ℃ target imposes high requirements on global emission reduction. Nationally Determined Con- tributions of all Parties are far from the 1.5 ℃ target, and conventional emission reduction technologies and policies will also have difficulty in fulfilling this task. In this context, geoengineering is gaining interest in the international arena. The Paris Agreement includes afforestation, carbon capture, utilization and storage, and negative emission technologies such as bio-energy with carbon capture and store. All of these techniques are CO2 removal technologies that belong to geoengineering. Solar radiation management, which is highly controversial, has also attracted increased attention in recent years. Although the outline of the IPCC Special Report on 1.5 ℃ does not include a specific section on geoengineering issues yet, geoengineering is an unconventional technical option that cannot be avoided in research and discussions on impact assessment, technical options, ethics, and international governance under the 1.5 ℃ target. On the basis of analyzing and discussing abovementioned issues, this paper proposes several policy suggestions for China to strengthen research on and response to geoengineering.展开更多
Lightning is one of the most important natural sources of atmospheric NOx.The authors investigate the2000–2050 changes in NOx emissions from lightning using the global three-dimensional Goddard Earth Observing System...Lightning is one of the most important natural sources of atmospheric NOx.The authors investigate the2000–2050 changes in NOx emissions from lightning using the global three-dimensional Goddard Earth Observing System chemical transport model(GEOS-Chem)driven by meteorological fields from the Goddard Institute for Space Studies(GISS)general circulation model(GCM)3.Projected changes in climate over 2000–2050are based on the Intergovernmental Panel on Climate Change(IPCC)A1B scenario.The global NOx emission from lightning is simulated to be 4.8 Tg N in present day and to increase by about 16.7%over 2000–2050 as a result of the future climate change.The largest present-day emissions and climate-induced changes are found in the upper troposphere in the tropics.Regionally in eastern China(20–55 N,98–125 E),NOx emissions from lighting is simulated to be 0.3 Tg N(6.3%of the global total emission)in present day and to increase by 26.7%over2000–2050.The simulated changes in NOx from lightening correspond well with the projected future changes in convective precipitation.展开更多
Northern peatlands store a large amount of carbon and play a significant role in the global carbon cycle. Owing to the presence of waterlogged and anaerobic conditions, peatlands are typically a source of methane (CH4...Northern peatlands store a large amount of carbon and play a significant role in the global carbon cycle. Owing to the presence of waterlogged and anaerobic conditions, peatlands are typically a source of methane (CH4), a very potent greenhouse gas. This paper reviews the key mechanisms of peatland CH4 production, consumption and transport and the major environmental and biotic controls on peatland CH4 emissions. The advantages and disadvantages of micrometeorological and chamber methods in measuring CH4 fluxes from northern peatlands are also discussed. The magnitude of CH4 flux varies considerably among peatland types (bogs and fens) and microtopographic locations (hummocks and hollows). Some anthropogenic activities including forestry, peat harvesting and industrial emission of sulphur dioxide can cause a reduction in CH4 release from northern peatlands. Further research should be conducted to investigate the in fluence of plant growth forms on CH4 flux from northern peatlands, determine the water table threshold at which plant production in peatlands enhances CH4 release, and quantify peatland CH4 exchange at plant community level with a higher temporal resolution using automatic chambers.展开更多
China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching targe...China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching target and a key point of action for China's resource conservation, environmental protection, shift in economic development patterns, and CO2 emission reduction to avoid climate change. The development stage where China maps out the CO2 emission peak target is earlier than that of the developed countries. It is a necessity that the non-fossil energy supplies be able to meet all the increased energy demand for achieving CO2 emission peaking. Given that China's potential GDP annual increasing rate will be more than 4%, and China's total energy demand will continue to increase by approximately 1.0%--1.5% annually around 2030, new and renewable energies will need to increase by 6%-8% annually to meet the desired CO2 emission peak. The share of new and renewable energies in China's total primary energy supply will be approximately 20% by 2030. At that time, the energy consumption elasticity will decrease to around 0.3, and the annual decrease in the rate of CO2 intensity will also be higher than 4% to ensure the sustained growth of GDE To achieve the CO2 emission peaking target and substantially promote the low-carbon deve!opment transformation, China needs to actively promote an energy production and consumption revolution, the innovation of advanced energy technologies, the reform of the energy regulatory system and pricing mechanism, and especially the construction of a national carbon emission cap and trade system.展开更多
In carbon global cycle, the relationship between the terrestrial ecosystem and the atmosphere where there are, among others, gases that contribute to the greenhouse effect, has become object of relevant scientific int...In carbon global cycle, the relationship between the terrestrial ecosystem and the atmosphere where there are, among others, gases that contribute to the greenhouse effect, has become object of relevant scientific interest. The content of organic matter in soil, expressed by its supplies as well as the organic matter degree of stability, are factors that can prevent the soil from acting as a drain and at the same time contribute for it to become a source of those gases. The variations in the way land is used in Brazil are factors responsible for the increase in emission of greenhouse effect gases. Based on these facts, this study was aimed to evaluate the CO2 and CH4 efflux using a gas retention chamber, and to associate these emissions to the organic carbon content in the soil. Two different areas were selected for the study, one in Tijuca Forest National Park, in a forest area, and the other at the Rio de Janeiro Federal Rural University campus. In the latter, the area was stratified in three sub areas according to the vegetation, use and water saturation degree. Samplings were performed during 8 months between 2013 and 2014.展开更多
文摘The Paris Agreement introduced a 1.5 ℃ target to control the rise in global temperature, but clear arrangements for feasible implementation pathways were not made. Achieving the 1.5 ℃ target imposes high requirements on global emission reduction. Nationally Determined Con- tributions of all Parties are far from the 1.5 ℃ target, and conventional emission reduction technologies and policies will also have difficulty in fulfilling this task. In this context, geoengineering is gaining interest in the international arena. The Paris Agreement includes afforestation, carbon capture, utilization and storage, and negative emission technologies such as bio-energy with carbon capture and store. All of these techniques are CO2 removal technologies that belong to geoengineering. Solar radiation management, which is highly controversial, has also attracted increased attention in recent years. Although the outline of the IPCC Special Report on 1.5 ℃ does not include a specific section on geoengineering issues yet, geoengineering is an unconventional technical option that cannot be avoided in research and discussions on impact assessment, technical options, ethics, and international governance under the 1.5 ℃ target. On the basis of analyzing and discussing abovementioned issues, this paper proposes several policy suggestions for China to strengthen research on and response to geoengineering.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05100503)the National Natural Science Foundation of China(Grant Nos.40775083,40825016,and 41021004)the China Meteorological Administration special funding inatmospheric science(Grant No.GYHY200906020)
文摘Lightning is one of the most important natural sources of atmospheric NOx.The authors investigate the2000–2050 changes in NOx emissions from lightning using the global three-dimensional Goddard Earth Observing System chemical transport model(GEOS-Chem)driven by meteorological fields from the Goddard Institute for Space Studies(GISS)general circulation model(GCM)3.Projected changes in climate over 2000–2050are based on the Intergovernmental Panel on Climate Change(IPCC)A1B scenario.The global NOx emission from lightning is simulated to be 4.8 Tg N in present day and to increase by about 16.7%over 2000–2050 as a result of the future climate change.The largest present-day emissions and climate-induced changes are found in the upper troposphere in the tropics.Regionally in eastern China(20–55 N,98–125 E),NOx emissions from lighting is simulated to be 0.3 Tg N(6.3%of the global total emission)in present day and to increase by 26.7%over2000–2050.The simulated changes in NOx from lightening correspond well with the projected future changes in convective precipitation.
基金Project supported by the Canadian Carbon Program (Fluxnet-Canada Research Network) funded by the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS)a Natural Sciences and Engineering Research Councilof Canada (NSERC) Discovery Grant to Nigel Roulet
文摘Northern peatlands store a large amount of carbon and play a significant role in the global carbon cycle. Owing to the presence of waterlogged and anaerobic conditions, peatlands are typically a source of methane (CH4), a very potent greenhouse gas. This paper reviews the key mechanisms of peatland CH4 production, consumption and transport and the major environmental and biotic controls on peatland CH4 emissions. The advantages and disadvantages of micrometeorological and chamber methods in measuring CH4 fluxes from northern peatlands are also discussed. The magnitude of CH4 flux varies considerably among peatland types (bogs and fens) and microtopographic locations (hummocks and hollows). Some anthropogenic activities including forestry, peat harvesting and industrial emission of sulphur dioxide can cause a reduction in CH4 release from northern peatlands. Further research should be conducted to investigate the in fluence of plant growth forms on CH4 flux from northern peatlands, determine the water table threshold at which plant production in peatlands enhances CH4 release, and quantify peatland CH4 exchange at plant community level with a higher temporal resolution using automatic chambers.
基金supported by Major Program of Humanities and Social Science Base,Ministry of Education(No.10JJD630011)
文摘China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching target and a key point of action for China's resource conservation, environmental protection, shift in economic development patterns, and CO2 emission reduction to avoid climate change. The development stage where China maps out the CO2 emission peak target is earlier than that of the developed countries. It is a necessity that the non-fossil energy supplies be able to meet all the increased energy demand for achieving CO2 emission peaking. Given that China's potential GDP annual increasing rate will be more than 4%, and China's total energy demand will continue to increase by approximately 1.0%--1.5% annually around 2030, new and renewable energies will need to increase by 6%-8% annually to meet the desired CO2 emission peak. The share of new and renewable energies in China's total primary energy supply will be approximately 20% by 2030. At that time, the energy consumption elasticity will decrease to around 0.3, and the annual decrease in the rate of CO2 intensity will also be higher than 4% to ensure the sustained growth of GDE To achieve the CO2 emission peaking target and substantially promote the low-carbon deve!opment transformation, China needs to actively promote an energy production and consumption revolution, the innovation of advanced energy technologies, the reform of the energy regulatory system and pricing mechanism, and especially the construction of a national carbon emission cap and trade system.
文摘In carbon global cycle, the relationship between the terrestrial ecosystem and the atmosphere where there are, among others, gases that contribute to the greenhouse effect, has become object of relevant scientific interest. The content of organic matter in soil, expressed by its supplies as well as the organic matter degree of stability, are factors that can prevent the soil from acting as a drain and at the same time contribute for it to become a source of those gases. The variations in the way land is used in Brazil are factors responsible for the increase in emission of greenhouse effect gases. Based on these facts, this study was aimed to evaluate the CO2 and CH4 efflux using a gas retention chamber, and to associate these emissions to the organic carbon content in the soil. Two different areas were selected for the study, one in Tijuca Forest National Park, in a forest area, and the other at the Rio de Janeiro Federal Rural University campus. In the latter, the area was stratified in three sub areas according to the vegetation, use and water saturation degree. Samplings were performed during 8 months between 2013 and 2014.