Wavelet transforms have been successfully used in seismic data processing with their ability for local time - frequency analysis. However, identification of directionality is limited because wavelet transform coeffici...Wavelet transforms have been successfully used in seismic data processing with their ability for local time - frequency analysis. However, identification of directionality is limited because wavelet transform coefficients reveal only three spatial orientations. Whereas the ridgelet transform has a superior capability for direction detection and the ability to process signals with linearly changing characteristics. In this paper, we present the issue of low signal-to-noise ratio (SNR) seismic data processing based on the ridgelet transform. Actual seismic data with low SNR from south China has been processed using ridgelet transforms to improve the SNR and the continuity of seismic events. The results show that the ridgelet transform is better than the wavelet transform for these tasks.展开更多
This paper addresses the emergence of water security problems in North China with the aim of highlighting key waterresources management and water security issues for the long-term development of North China. Three key...This paper addresses the emergence of water security problems in North China with the aim of highlighting key waterresources management and water security issues for the long-term development of North China. Three key problemsrelated to water resources and security issues in North China in the 21st century are addressed, namely 1) the watercycle under environmental change, 2) agricultural water saving, and 3) water security. Development of internationalresearch related to these issues is also reviewed. The research plan developed recently by the Chinese Academy of Sciences(CAS) is discussed and suggestions on research and development of water resources science in North China are presented.Thanks to focus on experimental catchments and dedicated research stations, a detailed knowledge of the water cycle onNorth China farmland has been compiled. A range of techniques that include isotope tracers has been used to acquirehydrologic data. Much research has been devoted to developing distributed hydrological models at different scales. In thewell irrigation district, five different water saving irrigation regimes have been investigated, and these regimes have hadwidespread application, and reduced water use 60-150 mm while they increased water use efficiency (WUE) by 20%-30%.Furthermore, preventing water pollution is the most essential step to ensure North China’s water security.展开更多
Due to the extremely arid climate in the western Qaidam Basin,the groundwater almost becomes the single water source for local residents and industrial production.It is necessary to know the reliable information on th...Due to the extremely arid climate in the western Qaidam Basin,the groundwater almost becomes the single water source for local residents and industrial production.It is necessary to know the reliable information on the groundwater cycle in this region for reasonable and sustainable exploitation of the groundwater resources with the further execution of recycling economy policies.This study focused on the recharge,the flow rate and the discharge of groundwater in the western Qaidam Basin through investigations on water chemistry and isotopes.Hydrological,chemical and isotopic characteristics show that the groundwater in the western Qaidam Basin was recharged by meltwater from new surface snow and old bottom glaciers on the northern slope of the Kunlun Mountains.In addition,the results also prove that the source water is enough and stable,and the rates of the circulation and renewal of the groundwater are relatively quick.Therefore,it can be concluded that the groundwater resources would guarantee the regional requirement if the meltwater volume of the mountains has not a great changes in future,moreover,water exploitation should be limited to the renewable amount of the groundwater reservoir in the western Qaidam Basin.展开更多
基金This paper is supported by China Petrochemical Key Project in the"11th Five-Year"Plan Technology and the Doctorate Fund of Ministry of Education of China (No.20050491504)
文摘Wavelet transforms have been successfully used in seismic data processing with their ability for local time - frequency analysis. However, identification of directionality is limited because wavelet transform coefficients reveal only three spatial orientations. Whereas the ridgelet transform has a superior capability for direction detection and the ability to process signals with linearly changing characteristics. In this paper, we present the issue of low signal-to-noise ratio (SNR) seismic data processing based on the ridgelet transform. Actual seismic data with low SNR from south China has been processed using ridgelet transforms to improve the SNR and the continuity of seismic events. The results show that the ridgelet transform is better than the wavelet transform for these tasks.
基金the Knowledge Innovation Key Project of the Chinese Academy of Sciences (Nos. KZCX2-SW-317/CX10G-E01-08 and KZCX1-09-02) and the National Natural Science Foundation of China (No. 50279049).
文摘This paper addresses the emergence of water security problems in North China with the aim of highlighting key waterresources management and water security issues for the long-term development of North China. Three key problemsrelated to water resources and security issues in North China in the 21st century are addressed, namely 1) the watercycle under environmental change, 2) agricultural water saving, and 3) water security. Development of internationalresearch related to these issues is also reviewed. The research plan developed recently by the Chinese Academy of Sciences(CAS) is discussed and suggestions on research and development of water resources science in North China are presented.Thanks to focus on experimental catchments and dedicated research stations, a detailed knowledge of the water cycle onNorth China farmland has been compiled. A range of techniques that include isotope tracers has been used to acquirehydrologic data. Much research has been devoted to developing distributed hydrological models at different scales. In thewell irrigation district, five different water saving irrigation regimes have been investigated, and these regimes have hadwidespread application, and reduced water use 60-150 mm while they increased water use efficiency (WUE) by 20%-30%.Furthermore, preventing water pollution is the most essential step to ensure North China’s water security.
基金Under the auspices of National Natural Science Foundation of China (No 40603007)
文摘Due to the extremely arid climate in the western Qaidam Basin,the groundwater almost becomes the single water source for local residents and industrial production.It is necessary to know the reliable information on the groundwater cycle in this region for reasonable and sustainable exploitation of the groundwater resources with the further execution of recycling economy policies.This study focused on the recharge,the flow rate and the discharge of groundwater in the western Qaidam Basin through investigations on water chemistry and isotopes.Hydrological,chemical and isotopic characteristics show that the groundwater in the western Qaidam Basin was recharged by meltwater from new surface snow and old bottom glaciers on the northern slope of the Kunlun Mountains.In addition,the results also prove that the source water is enough and stable,and the rates of the circulation and renewal of the groundwater are relatively quick.Therefore,it can be concluded that the groundwater resources would guarantee the regional requirement if the meltwater volume of the mountains has not a great changes in future,moreover,water exploitation should be limited to the renewable amount of the groundwater reservoir in the western Qaidam Basin.