Here we report iron(Fe) isotopic data of three pure Fe solution standards(IRMM-014, GSB Fe, and NIST3126a) and five widely used geological reference materials(RMs) from the United States Geological Survey and Geologic...Here we report iron(Fe) isotopic data of three pure Fe solution standards(IRMM-014, GSB Fe, and NIST3126a) and five widely used geological reference materials(RMs) from the United States Geological Survey and Geological Survey of Japan obtained on a Neptune Plus multi-collector–inductively coupled plasma–mass spectrometer(MC-ICP-MS) in our laboratory over the past 3 years. The instrumental mass bias was corrected by three independent methods: sample-standard bracketing(SSB),Ni doping + SSB, and ^(57)Fe–^(58)Fe double spike + SSB.Measurements reveal that both the Ni doping and double spike methods helped calibrate short-term fluctuations in mass bias. Collectively, almost all measurements of RMs yielded δ^(56)Fe within ± 0.05 of recommended values,provided that each sample was measured four times on MC-ICP-MS. For the first time, new recommended values for NIST SRM3126a are reported(δ^(56)Fe = 0.363 ± 0.006,2SE, 95% CI; and δ^(57)Fe = 0.534 ± 0.010, 2SE).展开更多
基金supported by the National Natural Science Foundation of China(41473016)the State Key Laboratory of Geological Processes and Mineral Resources
文摘Here we report iron(Fe) isotopic data of three pure Fe solution standards(IRMM-014, GSB Fe, and NIST3126a) and five widely used geological reference materials(RMs) from the United States Geological Survey and Geological Survey of Japan obtained on a Neptune Plus multi-collector–inductively coupled plasma–mass spectrometer(MC-ICP-MS) in our laboratory over the past 3 years. The instrumental mass bias was corrected by three independent methods: sample-standard bracketing(SSB),Ni doping + SSB, and ^(57)Fe–^(58)Fe double spike + SSB.Measurements reveal that both the Ni doping and double spike methods helped calibrate short-term fluctuations in mass bias. Collectively, almost all measurements of RMs yielded δ^(56)Fe within ± 0.05 of recommended values,provided that each sample was measured four times on MC-ICP-MS. For the first time, new recommended values for NIST SRM3126a are reported(δ^(56)Fe = 0.363 ± 0.006,2SE, 95% CI; and δ^(57)Fe = 0.534 ± 0.010, 2SE).