An epidemic model with a class of nonlinear incidence rates and distributed delay is analyzed. The nonlinear incidence is used to describe the saturated or the psychological effect of certain serious epidemics on the ...An epidemic model with a class of nonlinear incidence rates and distributed delay is analyzed. The nonlinear incidence is used to describe the saturated or the psychological effect of certain serious epidemics on the community when the number of infectives is getting larger. The distributed delay is derived to describe the dynamics of infectious diseases with varying immunity. Lyapunov functionals are used to show that the diseasefree equilibrium state is globally asymptotically stable when the basic reproduction number is less than or equal to one. Moreover, it is shown that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions under which the endemic equilibrium is locally and globally asymptotically stable are obtained.展开更多
文摘An epidemic model with a class of nonlinear incidence rates and distributed delay is analyzed. The nonlinear incidence is used to describe the saturated or the psychological effect of certain serious epidemics on the community when the number of infectives is getting larger. The distributed delay is derived to describe the dynamics of infectious diseases with varying immunity. Lyapunov functionals are used to show that the diseasefree equilibrium state is globally asymptotically stable when the basic reproduction number is less than or equal to one. Moreover, it is shown that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions under which the endemic equilibrium is locally and globally asymptotically stable are obtained.