Global change now poses a severe threat to the survival and development of mankind.Large-scale,real-time,highly accurate Earth observation from space has become a key technology used to observe global change.China is ...Global change now poses a severe threat to the survival and development of mankind.Large-scale,real-time,highly accurate Earth observation from space has become a key technology used to observe global change.China is one of the most influential countries affecting and being affected by global change,yet it has no scientific satellite for global change research so far.Developing global change scientific satellites not only would meet an important demand of China,but also would be a valuable contribution to the world.By analyzing the mechanisms of space-based observation of variables sensitive to global change,this paper explores the concept of global change scientific satellites,and proposes a series of global change scientific satellites to establish a scientific observation system for global environmental change monitoring from space.展开更多
In view of the present technology of autonomous orbit determination for navigation satellite constellation(NSC) and the geographical conditions of China,we propose a long-term semi-autonomous orbit determination schem...In view of the present technology of autonomous orbit determination for navigation satellite constellation(NSC) and the geographical conditions of China,we propose a long-term semi-autonomous orbit determination scheme supported by a few ground stations for NSC in this paper.Since the effect of rotation and translation of the entire constellation relative to the inertial reference frame can bring large errors to the autonomous orbit determination using only cross-link range measurement,a few ground stations(such as 1-3) are supposed to construct the connection between the NSC and the ground.Supported by such a few ground stations,the NSC can realize long-term orbit determination called semi-autonomous orbit determination.The simulation results based on the IGS ephemeris indicate that,for a certain degree of measurement errors,the NSC can maintain its semi-autonomous orbit determination in a period of 240 days within 5 meters of URE.展开更多
基金supported by National Basic Research Program of China(Grant No.2009CB723900)
文摘Global change now poses a severe threat to the survival and development of mankind.Large-scale,real-time,highly accurate Earth observation from space has become a key technology used to observe global change.China is one of the most influential countries affecting and being affected by global change,yet it has no scientific satellite for global change research so far.Developing global change scientific satellites not only would meet an important demand of China,but also would be a valuable contribution to the world.By analyzing the mechanisms of space-based observation of variables sensitive to global change,this paper explores the concept of global change scientific satellites,and proposes a series of global change scientific satellites to establish a scientific observation system for global environmental change monitoring from space.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2008AA12Z301)the National Natural Science Foundation of China (Grant No. 11078001)the Foundation of State Key Laboratory of Astronautics Dynamics
文摘In view of the present technology of autonomous orbit determination for navigation satellite constellation(NSC) and the geographical conditions of China,we propose a long-term semi-autonomous orbit determination scheme supported by a few ground stations for NSC in this paper.Since the effect of rotation and translation of the entire constellation relative to the inertial reference frame can bring large errors to the autonomous orbit determination using only cross-link range measurement,a few ground stations(such as 1-3) are supposed to construct the connection between the NSC and the ground.Supported by such a few ground stations,the NSC can realize long-term orbit determination called semi-autonomous orbit determination.The simulation results based on the IGS ephemeris indicate that,for a certain degree of measurement errors,the NSC can maintain its semi-autonomous orbit determination in a period of 240 days within 5 meters of URE.