Fault structures in the Litang-Batang region of West Sichuan are mainly sub-longitudinal and a set of NNE- and NW-trending conjugate shear fracture zones is developed. In this paper, emphasis is put on explaining the ...Fault structures in the Litang-Batang region of West Sichuan are mainly sub-longitudinal and a set of NNE- and NW-trending conjugate shear fracture zones is developed. In this paper, emphasis is put on explaining the movement patterns along the fault structures in the region since the late Pleistocene-Holocene on the basis of detailed interpretation of TM satellite images and aero-photos in geomorphologic aspect of active structures. The sub-latitudinal shortening rate along the sub-longitudinal Jinshajiang fault zone is determined to be 2~3mm/a since the late Quaternary, the horizontal dextral slip movement rate along the NNE-trending Batang fault is 1.3~2.7mm/a on average, and the horizontal sinistral slip movement rate along the NW-trending Litang fault is 2.6~4.4 mm/a on average. The general status of the recent crustal movement in the region and the regularities of block motion caused by it are analyzed in combination with data of geophysical fields, focal mechanism solutions and GPS measurements. The occurrence of the 1989 Batang M6.2~6.7 earthquake swarm is suggested to be the result of tensional rupture along the sub-latitudinal normal fault derived from the conjugate shearing along the NNE-trending Batang and the NW-trending Litang faults. It reveals a typical seismic case produced by normal faulting in a compressional tectonic environment.展开更多
Based on the hypothesis of the active tectonic blocks on the Chinese continent and its adjacent regions (both the method of the DDA on a spherical surface and the GPS survey results observed from 1991 to 2001 are used...Based on the hypothesis of the active tectonic blocks on the Chinese continent and its adjacent regions (both the method of the DDA on a spherical surface and the GPS survey results observed from 1991 to 2001 are used), the movements and deformations of each active tectonic block are calculated. The calculation results show that although the movements and deformations of active tectonic blocks in the eastern region and in the western region of China are different, active tectonic blocks in the same active tectonic block region are coherent. Then, the relative velocities of the active tectonic blocks’ boundary zones are calculated, and the relationship between current crustal motion and strong seismic activities is discussed. Earthquakes ( M S≥7 0) on the Chinese continent since 1988 all occurred on boundary zones of active tectonic blocks with high slipping speed.展开更多
In this study, the characteristics of geological structure at Qingshui coal mine were analyzed. And the hollow inclusion strain cell overcoring method was used to obtain the in situ stress. The effect of in situ stres...In this study, the characteristics of geological structure at Qingshui coal mine were analyzed. And the hollow inclusion strain cell overcoring method was used to obtain the in situ stress. The effect of in situ stress on the stability of soft rock roadway was analyzed. The results show that the maximum principal stress is in the horizontal direction with a northeast orientation and has a value of about 1.2–1.9 times larger than gravity; the right side of roadway roof and floor is easily subject to serious deformation and failure, and the in situ stress is found to be a major factor. This paper presents important information for developing countermeasures against the large deformation of the soft rock roadway at Qingshui coal mine.展开更多
The fields of structural geology and tectonics have witnessed great progress over the last decade and are poised for further expansion in the future. One of the significant breakthroughs is the establishment of the ...The fields of structural geology and tectonics have witnessed great progress over the last decade and are poised for further expansion in the future. One of the significant breakthroughs is the establishment of the 'Beyond Plate Tectonics Theory' where a combination of conceptual models and numerical modeling on plume tectonics and plate tectonics has enabled new insights into the structural and tectonic architecture and processes in the deep interior and deep sea. This paper synthesizes developments of structural geology and tectonics from a macroscopic perspective in deep interior and deep sea. Four key techniques are also reviewed: satellite altimetry for surface structures in deep-sea multi-beam sea-floor mapping; tomography for tectonics of the deep interior; diverse modeling approaches and software for unfolding dynamic evolution; and techniques for HT/HP experiments on material rheology and in situ component measurements.展开更多
The Kaoping submarine canyon, connected to the Kaoping River in the coastal plain in SW Taiwan, continues the dispersal path of modern Kaoping River sediments, from an active small mountainous drain basin to the recei...The Kaoping submarine canyon, connected to the Kaoping River in the coastal plain in SW Taiwan, continues the dispersal path of modern Kaoping River sediments, from an active small mountainous drain basin to the receiving basin of the South China Sea. Using seismic reflection sections, Chirp sonar profiles, and bathymetric mapping, we reveal characteristic erosive processes responsible for multiple cut-and-fill features, deeply entrenched thalweg, and sediment dispersal that are closely related to turbidity currents in the canyon. The river-canyon connection setting, along with extreme climatic conditions and active tectonism, is favorable for generation of turbidity currents at the canyon head. The upper reach of the Kaoping Canyon is distinguished into three distinct morpho/sedimentary features. The canyon head is characterized by V-shaped axial thalweg erosion. The sinuous segment of the upper reach is dominated by a deeply incised canyon pathway with trough-like morphol- ogy. Relatively small-scaled features of cut-and-fill associated with the dominant incision process are commonly along the canyon floor, resulting in a flat-floored pathway. Sliding and slumping dominated the steep canyon walls, producing and transporting sediments to canyon floor and partially filling up canyon thalweg. The meandering segment is characterized by erosive features where deeply down-cutting occurs in the outer bend of the major sea valley, forming V-shaped entrenched thalweg. The recurrences of turbidity currents have allowed continuous incision of the canyon head and have kept the connec- tion between the canyon head and the river mouth during Holocene highstand of sea level. The upper reach of the Kaoping Canyon is linked to drainage area and maintains as a conduit and/or sink for terrigenous and shallow marine material. Sediment-laden river plume operates in the Kaoping River-Canyon system, with turbidity currents flushing fiver sediments into the canyon head where the canyon thalweg is the most erosive. Presently, the upper reach of the Kaoping Canyon can be considered as a temporal sediment sink.展开更多
During Carboniferous time,tremendous juvenile arc crust was formed in the southern Central Asian Orogenic Belt(CAOB),although its origin remains unclear.Herein,we presented zircon U-Pb-Hf and whole-rock geochemical an...During Carboniferous time,tremendous juvenile arc crust was formed in the southern Central Asian Orogenic Belt(CAOB),although its origin remains unclear.Herein,we presented zircon U-Pb-Hf and whole-rock geochemical and Sr-Nd isotopic data for a suite of volcanic and pyroclastic rocks from the Khan-Bogd area in southern Mongolia.These Carboniferous pyroclastic rocks generally have some early Paleozoic zircons,probably derived from the granitic and sedimentary rocks of the Lake Zone and the Gobi-Altai Zone to the north,indicative of a continental arc nature.In addition,they have a main zircon U-Pb age of ca.370–330 Ma,positive Hf and Nd isotopes,and mafic-intermediate arc affinity,similar to the coeval arc magmatism.Moreover,the pyroclastic rocks of the northern area have more mafic and older volcanic components with depositional time(ca.350–370 Ma;Visean and Bashkirian stages)earlier than that in the southern area(mainly ca.350–315 Ma;Serpukhovian and Bashkirian stages).Combining a preexisting northward subduction supported by the available magnetotelluric data with a slab rollback model of the main oceanic basin of the Paleo-Asian Ocean(PAO)during Carboniferous and Triassic times,we infer that the Carboniferous arc magmatism was probably derived from a backarc ocean triggered by slab rollback.Thus,the juvenile arc volcanism of Mongolia,together with other areas(e.g.,Junggar)in the southern CAOB,represented a significant lateral accretion that terminated after the Carboniferous due to a significant contraction of the PAO.展开更多
Crustal subduction and continental collision is the core of plate tectonics theory. Understanding the formation and evolution of continental collision orogens is a key to develop the theory of plate tectonics. Differe...Crustal subduction and continental collision is the core of plate tectonics theory. Understanding the formation and evolution of continental collision orogens is a key to develop the theory of plate tectonics. Different types of subduction zones have been categorized based on the nature of subducted crust. Two types of collisional orogens, i.e. arc-continent and continent-continent collisional orogens, have been recognized based on the nature of collisional blocks and the composition of derivative rocks. Arc-continent collisional orogens contain both ancient and juvenile crustal rocks, and reworking of those rocks at the post-collisional stage generates magmatic rocks with different geochemical compositions. If an orogen is built by collision between two relatively old continental blocks, post-collisional magmatic rocks are only derived from reworking of the old crustal rocks. Collisional orogens undergo reactivation and reworking at action of lithosphere extension, with inheritance not only in the tectonic regime but also in the geochemical compositions of reworked products(i.e., magmatic rocks). In order to unravel basic principles for the evolution of continental tectonics at the post-collisional stages, it is necessary to investigate the reworking of orogenic belts in the post-collisional regime, to recognize physicochemical differences in deep continental collision zones, and to understand petrogenetic links between the nature of subducted crust and post-collisional magmatic rocks. Afterwards we are in a position to build the systematics of continental tectonics and thus to develop the plate tectonics theory.展开更多
Many reefs of the Late Paleozoic have been discovered recently in the Hinggan-lnner Mongolia area. These reefs clearly are geographically extensive, and possess distinctive features and well-developed reef-facies. The...Many reefs of the Late Paleozoic have been discovered recently in the Hinggan-lnner Mongolia area. These reefs clearly are geographically extensive, and possess distinctive features and well-developed reef-facies. They have been found to contain five reef-building communities and were constructed in four periods. Colonial coral-algal reefs at Aohan and Chifeng represent a warm shallow-sea in the Carboniferous. Different reefs in the Xiwu Banner were formed in three periods: early Late Carboniferous, late Late Carboniferous and Early Permian. These reefs were built in warm sea conditions. Their buildup types include colonial coral frameworks, algae-buildings and lime-mud mounds. Bryozoan reefs in the Zhalaite and Dongwu banners were built in the late Middle Permian and thrived in a cold shallow-sea. All reefs grew independently on two kinds of sedimentary platforms, carbonate and carbonate-clastic mixed platforms. Four reef-forming periods occurred later from south to north, along a collisional course between the North China Plate and the Siberian Plate. These reefs can be arranged into three 'reef-links' or reef zones that extend along plate margins. Among these, the Aohan-Chifeng reef-link indicates a northern margin of the North China Plate, the Zhalaite-Dongwu reef-link marks a southern margin of the Siberian Plate, and the Xiwu-Beishan reef-link reflects the former existence of some inter-plates. The strata of each reef-facies are thick and contain rich asphalt deposits. Overlapping and heteropic layers are very thick and contain dark oil/gas-rich horizons; TOC analyses verify that most of these are good hydrocarbon source rocks. This study shows that the study area is an excellent candidate for oil-gas exploration.展开更多
文摘Fault structures in the Litang-Batang region of West Sichuan are mainly sub-longitudinal and a set of NNE- and NW-trending conjugate shear fracture zones is developed. In this paper, emphasis is put on explaining the movement patterns along the fault structures in the region since the late Pleistocene-Holocene on the basis of detailed interpretation of TM satellite images and aero-photos in geomorphologic aspect of active structures. The sub-latitudinal shortening rate along the sub-longitudinal Jinshajiang fault zone is determined to be 2~3mm/a since the late Quaternary, the horizontal dextral slip movement rate along the NNE-trending Batang fault is 1.3~2.7mm/a on average, and the horizontal sinistral slip movement rate along the NW-trending Litang fault is 2.6~4.4 mm/a on average. The general status of the recent crustal movement in the region and the regularities of block motion caused by it are analyzed in combination with data of geophysical fields, focal mechanism solutions and GPS measurements. The occurrence of the 1989 Batang M6.2~6.7 earthquake swarm is suggested to be the result of tensional rupture along the sub-latitudinal normal fault derived from the conjugate shearing along the NNE-trending Batang and the NW-trending Litang faults. It reveals a typical seismic case produced by normal faulting in a compressional tectonic environment.
文摘Based on the hypothesis of the active tectonic blocks on the Chinese continent and its adjacent regions (both the method of the DDA on a spherical surface and the GPS survey results observed from 1991 to 2001 are used), the movements and deformations of each active tectonic block are calculated. The calculation results show that although the movements and deformations of active tectonic blocks in the eastern region and in the western region of China are different, active tectonic blocks in the same active tectonic block region are coherent. Then, the relative velocities of the active tectonic blocks’ boundary zones are calculated, and the relationship between current crustal motion and strong seismic activities is discussed. Earthquakes ( M S≥7 0) on the Chinese continent since 1988 all occurred on boundary zones of active tectonic blocks with high slipping speed.
基金provided by the Beijing Natural Science Foundation(No.8142032)the National Natural Science Foundation of China(No.41040027)+2 种基金the State Key Program of National Natural Science of China(No.5113400)the Research Fund for the Doctoral Program of Higher Education(No.20130023110021)the Special Fund of Basic Research and Operating Expenses of State Key Laboratory of Geomechanics and Deep Underground Engineering,China University of Mining&Technology,Beijing
文摘In this study, the characteristics of geological structure at Qingshui coal mine were analyzed. And the hollow inclusion strain cell overcoring method was used to obtain the in situ stress. The effect of in situ stress on the stability of soft rock roadway was analyzed. The results show that the maximum principal stress is in the horizontal direction with a northeast orientation and has a value of about 1.2–1.9 times larger than gravity; the right side of roadway roof and floor is easily subject to serious deformation and failure, and the in situ stress is found to be a major factor. This paper presents important information for developing countermeasures against the large deformation of the soft rock roadway at Qingshui coal mine.
基金Funding Sources:Marine 863 Project (No.2009AA093401)Projects of the National Natural Science Foundation of China (Nos.41072152,90814011 and 41190072)
文摘The fields of structural geology and tectonics have witnessed great progress over the last decade and are poised for further expansion in the future. One of the significant breakthroughs is the establishment of the 'Beyond Plate Tectonics Theory' where a combination of conceptual models and numerical modeling on plume tectonics and plate tectonics has enabled new insights into the structural and tectonic architecture and processes in the deep interior and deep sea. This paper synthesizes developments of structural geology and tectonics from a macroscopic perspective in deep interior and deep sea. Four key techniques are also reviewed: satellite altimetry for surface structures in deep-sea multi-beam sea-floor mapping; tomography for tectonics of the deep interior; diverse modeling approaches and software for unfolding dynamic evolution; and techniques for HT/HP experiments on material rheology and in situ component measurements.
基金supported under a grant of the "National" Science Council,Chinese Taiwan
文摘The Kaoping submarine canyon, connected to the Kaoping River in the coastal plain in SW Taiwan, continues the dispersal path of modern Kaoping River sediments, from an active small mountainous drain basin to the receiving basin of the South China Sea. Using seismic reflection sections, Chirp sonar profiles, and bathymetric mapping, we reveal characteristic erosive processes responsible for multiple cut-and-fill features, deeply entrenched thalweg, and sediment dispersal that are closely related to turbidity currents in the canyon. The river-canyon connection setting, along with extreme climatic conditions and active tectonism, is favorable for generation of turbidity currents at the canyon head. The upper reach of the Kaoping Canyon is distinguished into three distinct morpho/sedimentary features. The canyon head is characterized by V-shaped axial thalweg erosion. The sinuous segment of the upper reach is dominated by a deeply incised canyon pathway with trough-like morphol- ogy. Relatively small-scaled features of cut-and-fill associated with the dominant incision process are commonly along the canyon floor, resulting in a flat-floored pathway. Sliding and slumping dominated the steep canyon walls, producing and transporting sediments to canyon floor and partially filling up canyon thalweg. The meandering segment is characterized by erosive features where deeply down-cutting occurs in the outer bend of the major sea valley, forming V-shaped entrenched thalweg. The recurrences of turbidity currents have allowed continuous incision of the canyon head and have kept the connec- tion between the canyon head and the river mouth during Holocene highstand of sea level. The upper reach of the Kaoping Canyon is linked to drainage area and maintains as a conduit and/or sink for terrigenous and shallow marine material. Sediment-laden river plume operates in the Kaoping River-Canyon system, with turbidity currents flushing fiver sediments into the canyon head where the canyon thalweg is the most erosive. Presently, the upper reach of the Kaoping Canyon can be considered as a temporal sediment sink.
基金financially supported by the National Natural Science Foundation of China(42102260,42172236,42072264,41902229,and 42072267)Hong Kong Research Grants Council General Research Fund(17307918)+1 种基金the Fundamental Research Funds for the Central Universities,Chang’an University,China(300102272204)Opening Foundation of State Key Laboratory of Continental Dynamics,Northwest University,China(21LCD09)。
文摘During Carboniferous time,tremendous juvenile arc crust was formed in the southern Central Asian Orogenic Belt(CAOB),although its origin remains unclear.Herein,we presented zircon U-Pb-Hf and whole-rock geochemical and Sr-Nd isotopic data for a suite of volcanic and pyroclastic rocks from the Khan-Bogd area in southern Mongolia.These Carboniferous pyroclastic rocks generally have some early Paleozoic zircons,probably derived from the granitic and sedimentary rocks of the Lake Zone and the Gobi-Altai Zone to the north,indicative of a continental arc nature.In addition,they have a main zircon U-Pb age of ca.370–330 Ma,positive Hf and Nd isotopes,and mafic-intermediate arc affinity,similar to the coeval arc magmatism.Moreover,the pyroclastic rocks of the northern area have more mafic and older volcanic components with depositional time(ca.350–370 Ma;Visean and Bashkirian stages)earlier than that in the southern area(mainly ca.350–315 Ma;Serpukhovian and Bashkirian stages).Combining a preexisting northward subduction supported by the available magnetotelluric data with a slab rollback model of the main oceanic basin of the Paleo-Asian Ocean(PAO)during Carboniferous and Triassic times,we infer that the Carboniferous arc magmatism was probably derived from a backarc ocean triggered by slab rollback.Thus,the juvenile arc volcanism of Mongolia,together with other areas(e.g.,Junggar)in the southern CAOB,represented a significant lateral accretion that terminated after the Carboniferous due to a significant contraction of the PAO.
基金supported by funds from the National Basic Research Program of China(Grant No.2015CB856100)the National Natural Science Foundation of China(Grant No.41221062)
文摘Crustal subduction and continental collision is the core of plate tectonics theory. Understanding the formation and evolution of continental collision orogens is a key to develop the theory of plate tectonics. Different types of subduction zones have been categorized based on the nature of subducted crust. Two types of collisional orogens, i.e. arc-continent and continent-continent collisional orogens, have been recognized based on the nature of collisional blocks and the composition of derivative rocks. Arc-continent collisional orogens contain both ancient and juvenile crustal rocks, and reworking of those rocks at the post-collisional stage generates magmatic rocks with different geochemical compositions. If an orogen is built by collision between two relatively old continental blocks, post-collisional magmatic rocks are only derived from reworking of the old crustal rocks. Collisional orogens undergo reactivation and reworking at action of lithosphere extension, with inheritance not only in the tectonic regime but also in the geochemical compositions of reworked products(i.e., magmatic rocks). In order to unravel basic principles for the evolution of continental tectonics at the post-collisional stages, it is necessary to investigate the reworking of orogenic belts in the post-collisional regime, to recognize physicochemical differences in deep continental collision zones, and to understand petrogenetic links between the nature of subducted crust and post-collisional magmatic rocks. Afterwards we are in a position to build the systematics of continental tectonics and thus to develop the plate tectonics theory.
基金supported by the Geological Survey of China (Grant No. 1212010782004)National Natural Science Foundation of China (Grant No. 41072021)
文摘Many reefs of the Late Paleozoic have been discovered recently in the Hinggan-lnner Mongolia area. These reefs clearly are geographically extensive, and possess distinctive features and well-developed reef-facies. They have been found to contain five reef-building communities and were constructed in four periods. Colonial coral-algal reefs at Aohan and Chifeng represent a warm shallow-sea in the Carboniferous. Different reefs in the Xiwu Banner were formed in three periods: early Late Carboniferous, late Late Carboniferous and Early Permian. These reefs were built in warm sea conditions. Their buildup types include colonial coral frameworks, algae-buildings and lime-mud mounds. Bryozoan reefs in the Zhalaite and Dongwu banners were built in the late Middle Permian and thrived in a cold shallow-sea. All reefs grew independently on two kinds of sedimentary platforms, carbonate and carbonate-clastic mixed platforms. Four reef-forming periods occurred later from south to north, along a collisional course between the North China Plate and the Siberian Plate. These reefs can be arranged into three 'reef-links' or reef zones that extend along plate margins. Among these, the Aohan-Chifeng reef-link indicates a northern margin of the North China Plate, the Zhalaite-Dongwu reef-link marks a southern margin of the Siberian Plate, and the Xiwu-Beishan reef-link reflects the former existence of some inter-plates. The strata of each reef-facies are thick and contain rich asphalt deposits. Overlapping and heteropic layers are very thick and contain dark oil/gas-rich horizons; TOC analyses verify that most of these are good hydrocarbon source rocks. This study shows that the study area is an excellent candidate for oil-gas exploration.