期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
结合地标点与自编码的快速多视图聚类网络
1
作者 马睿 周治平 《智能系统学报》 CSCD 北大核心 2022年第2期333-340,共8页
针对目前存在的多视图聚类方法大多是对聚类准确性进行研究而未着重于提升算法效率,从而难以应用于大规模数据的现象,本文提出一种结合地标点和自编码的快速多视图聚类算法。利用加权PageRank排序算法选出每个视图中最具代表性的地标点... 针对目前存在的多视图聚类方法大多是对聚类准确性进行研究而未着重于提升算法效率,从而难以应用于大规模数据的现象,本文提出一种结合地标点和自编码的快速多视图聚类算法。利用加权PageRank排序算法选出每个视图中最具代表性的地标点。使用凸二次规划函数从数据中直接生成多个视图的相似度矩阵,求得多个视图的共识相似度矩阵以有效利用多个视图包含的具有一致性和互补性的聚类有效信息,将获得的具有低存储开销性能的共识相似度矩阵输入自编码器替代拉普拉斯矩阵特征分解,在联合学习框架下同时更新自编码器参数和聚类中心从而在降低计算复杂度的同时保证聚类精度。在5个多视图数据集上的实验证明了本文算法相对于其他多视图算法在运行时间上的优越性。 展开更多
关键词 多视图 地标点聚类 加权PageRank 自编码器 特征分解 联合学习 分析 数据挖掘
下载PDF
加权PageRank改进地标表示的自编码谱聚类算法 被引量:2
2
作者 储德润 周治平 《智能系统学报》 CSCD 北大核心 2020年第2期302-309,共8页
针对传统谱聚类算法在处理大规模数据集时,聚类精度低并且存在相似度矩阵存储开销大和拉普拉斯矩阵特征分解计算复杂度高的问题。提出了一种加权PageRank改进地标表示的自编码谱聚类算法,首先选取数据亲和图中权重最高的节点作为地标点... 针对传统谱聚类算法在处理大规模数据集时,聚类精度低并且存在相似度矩阵存储开销大和拉普拉斯矩阵特征分解计算复杂度高的问题。提出了一种加权PageRank改进地标表示的自编码谱聚类算法,首先选取数据亲和图中权重最高的节点作为地标点,以选定的地标点与其他数据点之间的相似关系来逼近相似度矩阵作为叠加自动编码器的输入。然后利用聚类损失同时更新自动编码器和聚类中心的参数,从而实现可扩展和精确的聚类。实验表明,在几种典型的数据集上,所提算法与地标点谱聚类算法和深度谱聚类算法相比具有更好的聚类性能。 展开更多
关键词 机器学习 数据挖掘 分析 地标点聚类 加权PageRank 自动编码器 损失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部