The developing processes of stress and deformation fields of a protected layer after mining an upper-protective layer with a bow pseudo-incline technique were simulated to locate the protection region. The pressure re...The developing processes of stress and deformation fields of a protected layer after mining an upper-protective layer with a bow pseudo-incline technique were simulated to locate the protection region. The pressure relief of the protected layer was analyzed after mining the upper-protective layer. The pressure relief angle along the strike and incline were located according to the roles of protection of the deformation and stress pressure-relief of the protective layer after mining. This results show that the upper-protective layer with the bow pseudo-incline technique have an upper and downside pressure relief angle of 85 and 68 degrees respectively; the distribution of strike pressure relief angles along the pseudo-incline working face is uneven and their values range from 38.3 to 51 degrees. The pressure relief angle of the inclined middle location was the largest. The distribution of the protection region of the upper-protective layer with the bow pseudo-incline teelmique located by practical tests and numerical simulation is essentially consistent, compared with the results obtained by these methods.展开更多
The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion...The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion Database,the spatial analysis model of a vehicle-bridge system was developed,the VTB element was derived to simulate the interaction of train and bridge,and the elasto-plastic seismic responses of the bridge were calculated.The calculation results show that girder and pier top displacement,and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes,and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading.The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base,which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve.The results show that there is an amplification of the vertical deflection in the girder's mid-span owing to the high vertical ground motion.In light of these findings,the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.展开更多
Based on the analysis about the hydrogeological conditions and engineering geological conditions, this paper makes analysis on the possible risks of the deep overlying stratum foundation and establishes the risk evalu...Based on the analysis about the hydrogeological conditions and engineering geological conditions, this paper makes analysis on the possible risks of the deep overlying stratum foundation and establishes the risk evaluation index system during the foundation operating period. Such methods as analytic hierarchy process (AHP) , Delphi method and fuzzy comprehensive evaluation method are adopted to make the quantitative analysis on the risk factors and establish the risk judgment model. According to the actual engineering of Taizhou Bridge, the paper evaluates the risk of the foundation during the operating period at the condition of deep overlying stratum. The evaluation results can provide the reference for the risk management of the bridge foundation durin~ the ooerating period.展开更多
基金Projects PLN0610 supported by the Open Fund of State Key Lab of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University)HKLGF200706 by the Opening Project of Henan Key Laboratory of Coal Mine Methane and Fire Prevention+3 种基金50334060, 50474025 and 50774106 by the National Natural Science Foundation of China2005CB221502 by the National Basic Research Program of China50621403 by the Natural Science Innova-tion Group Foundation of ChinaCSTC, 2006BB7147, 2006AA7002 by the Natural Science Foundation of Chongqing
文摘The developing processes of stress and deformation fields of a protected layer after mining an upper-protective layer with a bow pseudo-incline technique were simulated to locate the protection region. The pressure relief of the protected layer was analyzed after mining the upper-protective layer. The pressure relief angle along the strike and incline were located according to the roles of protection of the deformation and stress pressure-relief of the protective layer after mining. This results show that the upper-protective layer with the bow pseudo-incline technique have an upper and downside pressure relief angle of 85 and 68 degrees respectively; the distribution of strike pressure relief angles along the pseudo-incline working face is uneven and their values range from 38.3 to 51 degrees. The pressure relief angle of the inclined middle location was the largest. The distribution of the protection region of the upper-protective layer with the bow pseudo-incline teelmique located by practical tests and numerical simulation is essentially consistent, compared with the results obtained by these methods.
基金Project(2013CB036203)supported by the National Basic Research Program of ChinaProject(2013M530022)supported by China Postdoctoral Science Foundation+4 种基金Project(2013-K5-31)supported by Science and Technology Plan of Ministry of Housing and Urban-Rural Development of ChinaProject supported by High-level Scientific Research Foundation for the Introduction of Talent of Yangzhou University,ChinaProject supported by the Open Fund of the National Engineering Laboratory for High Speed Railway Construction,ChinaProject(IRT1296)supported by the Program for Changjiang Scholars and Innovative Research Team in University,ChinaProject(50908236)supported by the National Natural Science Foundation of China
文摘The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion Database,the spatial analysis model of a vehicle-bridge system was developed,the VTB element was derived to simulate the interaction of train and bridge,and the elasto-plastic seismic responses of the bridge were calculated.The calculation results show that girder and pier top displacement,and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes,and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading.The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base,which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve.The results show that there is an amplification of the vertical deflection in the girder's mid-span owing to the high vertical ground motion.In light of these findings,the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.
基金National Science and Technology Support Program of China(No.2009BAG15B02)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-180)
文摘Based on the analysis about the hydrogeological conditions and engineering geological conditions, this paper makes analysis on the possible risks of the deep overlying stratum foundation and establishes the risk evaluation index system during the foundation operating period. Such methods as analytic hierarchy process (AHP) , Delphi method and fuzzy comprehensive evaluation method are adopted to make the quantitative analysis on the risk factors and establish the risk judgment model. According to the actual engineering of Taizhou Bridge, the paper evaluates the risk of the foundation during the operating period at the condition of deep overlying stratum. The evaluation results can provide the reference for the risk management of the bridge foundation durin~ the ooerating period.