Different image processing algorithms have been evaluated in the context of geological mapping using Landsat TM data. False color composites, the principal component imagery, and IHS decorrelation stretching method fo...Different image processing algorithms have been evaluated in the context of geological mapping using Landsat TM data. False color composites, the principal component imagery, and IHS decorrelation stretching method for Landsat-5 TM data have been found useful for delineating the regional geological features, mainly to provide the maximum geological information of the studied area . The study testifies that using which image processing yields best results for geological mapping in arid and semiarid regions by preserving morphological and spectral information. Generally, the studied area can be divided into three main geological units: Basaltic intrusive rocks, Metamorphic with varying intensities and Sedimentary rocks.展开更多
A new finite element model for single-layered strand was investigated for accurate and efficient mechanical behavior analysis.Mathematical model was created by sectional path-nodes sweeping and dynamic node-beam mappi...A new finite element model for single-layered strand was investigated for accurate and efficient mechanical behavior analysis.Mathematical model was created by sectional path-nodes sweeping and dynamic node-beam mapping.Geometric relations between nodes in center core wire and helical wires were deduced in tension and bending incorporating material elasticity theory and deformation geometrical compatibility.Based on Timoshenko beam theory,strand of a pitch length was modeled with specific material,geometric parameters and synthesized constraint equations defined in ANSYS software,and predetermined load cases were performed.The obtained results show that discrepancies between suggested method and Costello theory do not exceed 1.51% in tension and 6.21% in bending,which verifies the correctness and accuracy of the suggested finite element model in predicting mechanical behavior of single-layered wire strand.展开更多
Remote sensing technique, replacing conventional sonar bathymetry technique, has become an effective complementary method of mapping submarine terrain where special conditions make the sonar technique difficult to be ...Remote sensing technique, replacing conventional sonar bathymetry technique, has become an effective complementary method of mapping submarine terrain where special conditions make the sonar technique difficult to be carried out. At the same time, as one kind of data set, multispectral remote sensing data has the disadvantage of being influenced by the variable bottom types in shallow seawater, when it is applied in bathymetry. This paper puts forward a new method to extract water depth information from multispectral data, considering the bottom classification and the true water depth accuracy. That is the Principal Component Analysis (PCA) technique based on the bottom classification. By the least square regression with significance, the experiment near Qingdao City has obtained more satisfactory bathymetry accuracy than that of the traditional single-band method, with the mean absolute error about 2.57m.展开更多
The theoretical framework of visual simulation in virtual reality is discussed. The new concept of visual image space is supposed. On the basis of visual image space, in visual perceptive sense, VR is considered as a ...The theoretical framework of visual simulation in virtual reality is discussed. The new concept of visual image space is supposed. On the basis of visual image space, in visual perceptive sense, VR is considered as a spatial simulation. The objective of the spatial simulation is to transform physical space to visual image space. Last, the prototype system, surveying & mapping virtual Reality (SMVR), is developed, and the space simulation above is realized. By use of SMVR, the real 3D representation, 3D visual analysis, virtual plan and designs can be implemented.展开更多
Ground textures seriously interfere with the exact identification of grinding damage. The common nondestructive testing techniques for engineering ceramics are limited by their difficulty and cost. Therefore, this pap...Ground textures seriously interfere with the exact identification of grinding damage. The common nondestructive testing techniques for engineering ceramics are limited by their difficulty and cost. Therefore, this paper proposes a global image reconstruction scheme in ground texture surface using Fourier transform (FT). The lines associated with high-energy frequency components in the spectrum that represent ground texture information can be detected by Hough transform (HT), and the corresponding high-energy frequency components are set to zero. Then the spectrum image is back-transformed into the spatial domain image with inverse Fourier transform (IFT). In the reconstructed image, the main ground texture information has been removed, whereas the surface defects information is preserved. Finally, Canny edge detection is used to extract damage image in the reconstructed image. The experimental results of damage detection for the ground texture surfaces of engineering ceramics have shown that the proposed method is effective.展开更多
Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This ...Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This paper lays its emphasis on algorithmic skills and programming techniques as well as applicationof the software.展开更多
If a geocentric 3D coordinate system is adopted in China to replace 2D non-geocentric coordinate system, the coordinates of the surface points will be changed accordingly. The influences on the current maps of China, ...If a geocentric 3D coordinate system is adopted in China to replace 2D non-geocentric coordinate system, the coordinates of the surface points will be changed accordingly. The influences on the current maps of China, especially the topographic maps, are discussed due to the replacement of the coordinate systems. Taking the replacement of Xi’an 80 coordinate system by GRS80 for a numerical example, this paper analyzes the changes of latitude, longitude, Gauss plane coordinates of the surface points, as well as the orientation and the length changes between the points on the map, including the changes of map border lines and sheet corner points.展开更多
Under suitable conditions of tidal current and wind, underwater topography can be detected by synthetic aperture radar (SAR) indirectly. Underwater topography SAR imaging includes three physical processes: radar ocean...Under suitable conditions of tidal current and wind, underwater topography can be detected by synthetic aperture radar (SAR) indirectly. Underwater topography SAR imaging includes three physical processes: radar ocean surface backscattering, the modulation of sea surface short wave spectrum by the variations in sea surface currents, and the modulation of sea surface currents by the underwater topography. The first process is described usually by Bragg scattering theory because the incident angle of SAR is always between 20°-70°. The second process is described by the action balance equation. The third process is described by an ocean hydrodynamic model. Based on the SAR imaging mechanism for underwater topography, an underwater topography SAR detection model and a simplified method for its calculation are introduced. In the detection model, a two-dimensional hydrodynamic model – the shallow water model is used to describe the motion of tidal current. Due to the difficulty of determining the expression of SAR backscattering cross section in which some terms can not be determined, the backscattering cross section of SAR image used in the underwater topography SAR detection is pro-processed by the simulated SAR image of the coarse-grid water depth to simplify the calculation. Taiwan Shoal, located at the southwest outlet of Taiwan Strait, is selected as an evaluation area for this technique due to the occurrence of hundreds of sand waves. The underwater topography of Taiwan Shoal was detected by two scenes of ERS-2 SAR images which were acquired on 9 January 2000 and 6 June 2004. The detection results are compared with in situ measured water depths for three profiles. The average absolute and relative errors of the best detection result are 2.23 m and 7.5 %, respectively. These show that the detection model and the simplified method introduced in the paper is feasible.展开更多
On the basis of the principles of simple random sampling, the statistical model of rate of disfigurement (RD) is put forward and described in detail. According to the definition of simple random sampling for the attri...On the basis of the principles of simple random sampling, the statistical model of rate of disfigurement (RD) is put forward and described in detail. According to the definition of simple random sampling for the attribute data in GIS, the mean and variance of the RD are deduced as the characteristic value of the statistical model in order to explain the feasibility of the accuracy measurement of the attribute data in GIS by using the RD. Moreover, on the basis of the mean and variance of the RD, the quality assessment method for attribute data of vector maps during the data collecting is discussed. The RD spread graph is also drawn to see whether the quality of the attribute data is under control. The RD model can synthetically judge the quality of attribute data, which is different from other measurement coefficients that only discuss accuracy of classification.展开更多
This paper describes the deep rockburst simulation system to reproduce the granite instantaneous rockburst process.Based on the PIV(Particle Image Velocimetry)technique,quantitative analysis of a rockburst,the images ...This paper describes the deep rockburst simulation system to reproduce the granite instantaneous rockburst process.Based on the PIV(Particle Image Velocimetry)technique,quantitative analysis of a rockburst,the images of tracer particle,displacement and strain fields can be obtained,and the debris trajectory described.According to the observation of on-site tests,the dynamic rockburst is actually a gas–solid high speed flow process,which is caused by the interaction of rock fragments and surrounding air.With the help of analysis on high speed video and PIV images,the granite rockburst failure process is composed of six stages of platey fragment spalling and debris ejection.Meanwhile,the elastic energy for these six stages has been calculated to study the energy variation.The results indicate that the rockburst process can be summarized as:an initiating stage,intensive developing stage and gradual decay stage.This research will be helpful for our further understanding of the rockburst mechanism.展开更多
Soil structure plays an important role in understanding soil attributes as well as hydrological processes. Effective method to obtain high quality soil map is therefore important for both soil science research and soi...Soil structure plays an important role in understanding soil attributes as well as hydrological processes. Effective method to obtain high quality soil map is therefore important for both soil science research and soil work ability improvement. However,traditional method such as digging soil pits is destructive and time-consuming. In this study, the structure of headwater hillslopes from Hemuqiao catchment(Taihu Basin, China) have been analyzed both by indirect(ground penetrating radar, GPR) and direct(excavation or soil auger) methods. Four transects at different locations of hillslopes in the catchment were selected for GPR survey. Three of them(#1, #2, and #3) were excavated to obtain fullscale soil information for interpreting radar images.We found that the most distinct boundary that can be detected by GPR is the boundary between soil and underlain bedrock. In some cases(e.g., 8-17 m in transect #2), in which the in situ soil was scarcely affected by colluvial process, different soil layers can be identified. This identification process utilized the sensitive of GPR to capture abrupt changes of soil characteristics in layer boundaries, e.g., surface organic layer(layer #1) and bamboo roots layer(layer#2, contain stone fragments), illuvial deposits layer(layer #3) and regolith layer(layer #4). However, in areas where stone fragments were irregularly distributed in the soil profile(highly affected bycolluvial and/or fluvial process), it was possible to distinguish which part contains more stone fragments in soil profile on the basis of reflection density(transect #3). Transect #4(unexcavated) was used to justify the GPR method for soil survey based on experiences from former transects. After that, O horizon thickness was compared by a hand auger.This work has demonstrated that GPR images can be of a potential data source for hydrological predictions.展开更多
Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time ...Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map, This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge comer pixels are then defined and used to construct an edge comer histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.展开更多
On the basis of the comparison data of Stage II of the tunnel site leveling project at Hutubi seismic station and the observation data of Stage IV of the site cross fault leveling project at Hutubi and the level obser...On the basis of the comparison data of Stage II of the tunnel site leveling project at Hutubi seismic station and the observation data of Stage IV of the site cross fault leveling project at Hutubi and the level observation data from the cross fault survey lines in Dafeng from 1987 to 2012,this paper analyses the variation rates of the tunnel site leveling observation results and the difference of annual change rates of the cross fault level observations at Hongshan seismic station in Hutubi. This paper concludes the reliability of the Ni004 optical level used by the station and puts forward a proposal based on the analysis. This paper also explores the cross fault leveling research on the ground deformation in the region concerned on the basis of the historical observation of the cross fault level at Dafeng and the comparison results of the tunnel site leveling observation in Hutubi.展开更多
On the basis of an electronic map_based hypermedia data model (EMBHDM),this paper makes a study on the technologies of nonlinear storage,organization,management and browsing of information as well as organization of d...On the basis of an electronic map_based hypermedia data model (EMBHDM),this paper makes a study on the technologies of nonlinear storage,organization,management and browsing of information as well as organization of data on the basis of the relationship between multimedia information of electronic maps. This paper first analyzes some features of electronic maps and hypermedia technology,and then illustrates the creation of EMBHDM with some examples.The tests show that this model can efficiently organize and express multimedia data.展开更多
In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting fun...In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting function, which is obtained by block-based moving object detection and motion estimation with variable block sizes. Experimental results show that the proposed algorithm improves the temporal consistency of the depth video and reduces by about 38% both the flickering artefact in the synthesized view and the number of coding bits for depth video coding.展开更多
In this paper, the authors present ConGrap, a novel contour detector for finding closed contours with semantic connections. Based on gradient-based edge detection, a Gradient Map is generated to store the orientation ...In this paper, the authors present ConGrap, a novel contour detector for finding closed contours with semantic connections. Based on gradient-based edge detection, a Gradient Map is generated to store the orientation of every edge pixel. Using the edge image and the generated Gradient Map, ConGrap separates the image into semantic parts and objects. Each edge pixel is mapped to a contour by a three-stage hierarchical analysis of neighbored pixels and ensures the closing of contours. A final post-process of ConGrap extracts the contour borderlines and merges them, if they semantically relate to each other. In contrast to common edge and contour detections, ConGrap not only produces an edge image, but also provides additional information (e.g., the borderline pixel coordinates the bounding box, etc.) for every contour. Additionally, the resulting contour image provides closed contours without discontinuities and merged regions with semantic connections. Consequently, the ConGrap contour image can be seen as an enhanced edge image as well as a kind of segmentation and object recognition.展开更多
文摘Different image processing algorithms have been evaluated in the context of geological mapping using Landsat TM data. False color composites, the principal component imagery, and IHS decorrelation stretching method for Landsat-5 TM data have been found useful for delineating the regional geological features, mainly to provide the maximum geological information of the studied area . The study testifies that using which image processing yields best results for geological mapping in arid and semiarid regions by preserving morphological and spectral information. Generally, the studied area can be divided into three main geological units: Basaltic intrusive rocks, Metamorphic with varying intensities and Sedimentary rocks.
基金Project(2009J007)supported by Science and Technology Department of Railway Ministry of ChinaProject(U1134203)supported by Joint Fund of High-speed Railway Fundamental Research,China
文摘A new finite element model for single-layered strand was investigated for accurate and efficient mechanical behavior analysis.Mathematical model was created by sectional path-nodes sweeping and dynamic node-beam mapping.Geometric relations between nodes in center core wire and helical wires were deduced in tension and bending incorporating material elasticity theory and deformation geometrical compatibility.Based on Timoshenko beam theory,strand of a pitch length was modeled with specific material,geometric parameters and synthesized constraint equations defined in ANSYS software,and predetermined load cases were performed.The obtained results show that discrepancies between suggested method and Costello theory do not exceed 1.51% in tension and 6.21% in bending,which verifies the correctness and accuracy of the suggested finite element model in predicting mechanical behavior of single-layered wire strand.
基金Foundation item: Under the auspices of Scientific Foundation Research Project of the Ministry of Science and Technology and Chinese Academy of Surveying and Mapping (No. F0610)
文摘Remote sensing technique, replacing conventional sonar bathymetry technique, has become an effective complementary method of mapping submarine terrain where special conditions make the sonar technique difficult to be carried out. At the same time, as one kind of data set, multispectral remote sensing data has the disadvantage of being influenced by the variable bottom types in shallow seawater, when it is applied in bathymetry. This paper puts forward a new method to extract water depth information from multispectral data, considering the bottom classification and the true water depth accuracy. That is the Principal Component Analysis (PCA) technique based on the bottom classification. By the least square regression with significance, the experiment near Qingdao City has obtained more satisfactory bathymetry accuracy than that of the traditional single-band method, with the mean absolute error about 2.57m.
文摘The theoretical framework of visual simulation in virtual reality is discussed. The new concept of visual image space is supposed. On the basis of visual image space, in visual perceptive sense, VR is considered as a spatial simulation. The objective of the spatial simulation is to transform physical space to visual image space. Last, the prototype system, surveying & mapping virtual Reality (SMVR), is developed, and the space simulation above is realized. By use of SMVR, the real 3D representation, 3D visual analysis, virtual plan and designs can be implemented.
基金Supported by National Natural Science Foundation of China (No. 51075296)
文摘Ground textures seriously interfere with the exact identification of grinding damage. The common nondestructive testing techniques for engineering ceramics are limited by their difficulty and cost. Therefore, this paper proposes a global image reconstruction scheme in ground texture surface using Fourier transform (FT). The lines associated with high-energy frequency components in the spectrum that represent ground texture information can be detected by Hough transform (HT), and the corresponding high-energy frequency components are set to zero. Then the spectrum image is back-transformed into the spatial domain image with inverse Fourier transform (IFT). In the reconstructed image, the main ground texture information has been removed, whereas the surface defects information is preserved. Finally, Canny edge detection is used to extract damage image in the reconstructed image. The experimental results of damage detection for the ground texture surfaces of engineering ceramics have shown that the proposed method is effective.
文摘Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This paper lays its emphasis on algorithmic skills and programming techniques as well as applicationof the software.
文摘If a geocentric 3D coordinate system is adopted in China to replace 2D non-geocentric coordinate system, the coordinates of the surface points will be changed accordingly. The influences on the current maps of China, especially the topographic maps, are discussed due to the replacement of the coordinate systems. Taking the replacement of Xi’an 80 coordinate system by GRS80 for a numerical example, this paper analyzes the changes of latitude, longitude, Gauss plane coordinates of the surface points, as well as the orientation and the length changes between the points on the map, including the changes of map border lines and sheet corner points.
基金Supported by National Natural Science Foundation of China (Nos. 60672159 & 60890075)the State Oceanic Administration Marine Science Foundation for Youths (No.2009421)+1 种基金the Special Funds for Marine Commonweal Research (No. 200705027)the Special Funds for Basic Scientific Research Project of the First Institute of Oceanography, S.O.A (No. 2008T29)
文摘Under suitable conditions of tidal current and wind, underwater topography can be detected by synthetic aperture radar (SAR) indirectly. Underwater topography SAR imaging includes three physical processes: radar ocean surface backscattering, the modulation of sea surface short wave spectrum by the variations in sea surface currents, and the modulation of sea surface currents by the underwater topography. The first process is described usually by Bragg scattering theory because the incident angle of SAR is always between 20°-70°. The second process is described by the action balance equation. The third process is described by an ocean hydrodynamic model. Based on the SAR imaging mechanism for underwater topography, an underwater topography SAR detection model and a simplified method for its calculation are introduced. In the detection model, a two-dimensional hydrodynamic model – the shallow water model is used to describe the motion of tidal current. Due to the difficulty of determining the expression of SAR backscattering cross section in which some terms can not be determined, the backscattering cross section of SAR image used in the underwater topography SAR detection is pro-processed by the simulated SAR image of the coarse-grid water depth to simplify the calculation. Taiwan Shoal, located at the southwest outlet of Taiwan Strait, is selected as an evaluation area for this technique due to the occurrence of hundreds of sand waves. The underwater topography of Taiwan Shoal was detected by two scenes of ERS-2 SAR images which were acquired on 9 January 2000 and 6 June 2004. The detection results are compared with in situ measured water depths for three profiles. The average absolute and relative errors of the best detection result are 2.23 m and 7.5 %, respectively. These show that the detection model and the simplified method introduced in the paper is feasible.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .40 1 71 0 78) ,FundfromHongKongPolytechnicUniversity (No.1 .34 .970 9)andtheResearchGrantsCouncilofHongKongSAR (No .3 ZB40 ) .
文摘On the basis of the principles of simple random sampling, the statistical model of rate of disfigurement (RD) is put forward and described in detail. According to the definition of simple random sampling for the attribute data in GIS, the mean and variance of the RD are deduced as the characteristic value of the statistical model in order to explain the feasibility of the accuracy measurement of the attribute data in GIS by using the RD. Moreover, on the basis of the mean and variance of the RD, the quality assessment method for attribute data of vector maps during the data collecting is discussed. The RD spread graph is also drawn to see whether the quality of the attribute data is under control. The RD model can synthetically judge the quality of attribute data, which is different from other measurement coefficients that only discuss accuracy of classification.
基金supported by the National Natural Science Foundation of China (No.41172270)National Basic Research Program (No.2011CB201201)
文摘This paper describes the deep rockburst simulation system to reproduce the granite instantaneous rockburst process.Based on the PIV(Particle Image Velocimetry)technique,quantitative analysis of a rockburst,the images of tracer particle,displacement and strain fields can be obtained,and the debris trajectory described.According to the observation of on-site tests,the dynamic rockburst is actually a gas–solid high speed flow process,which is caused by the interaction of rock fragments and surrounding air.With the help of analysis on high speed video and PIV images,the granite rockburst failure process is composed of six stages of platey fragment spalling and debris ejection.Meanwhile,the elastic energy for these six stages has been calculated to study the energy variation.The results indicate that the rockburst process can be summarized as:an initiating stage,intensive developing stage and gradual decay stage.This research will be helpful for our further understanding of the rockburst mechanism.
基金supported by the National Nature Science Foundation of China (Grants No. 41271040, 51190091)The Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 20145028012)
文摘Soil structure plays an important role in understanding soil attributes as well as hydrological processes. Effective method to obtain high quality soil map is therefore important for both soil science research and soil work ability improvement. However,traditional method such as digging soil pits is destructive and time-consuming. In this study, the structure of headwater hillslopes from Hemuqiao catchment(Taihu Basin, China) have been analyzed both by indirect(ground penetrating radar, GPR) and direct(excavation or soil auger) methods. Four transects at different locations of hillslopes in the catchment were selected for GPR survey. Three of them(#1, #2, and #3) were excavated to obtain fullscale soil information for interpreting radar images.We found that the most distinct boundary that can be detected by GPR is the boundary between soil and underlain bedrock. In some cases(e.g., 8-17 m in transect #2), in which the in situ soil was scarcely affected by colluvial process, different soil layers can be identified. This identification process utilized the sensitive of GPR to capture abrupt changes of soil characteristics in layer boundaries, e.g., surface organic layer(layer #1) and bamboo roots layer(layer#2, contain stone fragments), illuvial deposits layer(layer #3) and regolith layer(layer #4). However, in areas where stone fragments were irregularly distributed in the soil profile(highly affected bycolluvial and/or fluvial process), it was possible to distinguish which part contains more stone fragments in soil profile on the basis of reflection density(transect #3). Transect #4(unexcavated) was used to justify the GPR method for soil survey based on experiences from former transects. After that, O horizon thickness was compared by a hand auger.This work has demonstrated that GPR images can be of a potential data source for hydrological predictions.
基金Supported by the National Natural Nature Science Foundation of China (Grant No. 41376102), Fundamental Research Funds for the Central Universities (Gant No. HEUCF150514) and Chinese Scholarship Council (Grant No. 201406680029).
文摘Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map, This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge comer pixels are then defined and used to construct an edge comer histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.
基金sponsored by the Natural Science Foundation of Xinjiang Uighur Autonomous Region2012211B56)the Natural Science Foundation of China(41374031)the Earthquake Science and Technology Spark Plan(XH1030),and the Earthquake Science and Technology Spark Progam XH14054Y)
文摘On the basis of the comparison data of Stage II of the tunnel site leveling project at Hutubi seismic station and the observation data of Stage IV of the site cross fault leveling project at Hutubi and the level observation data from the cross fault survey lines in Dafeng from 1987 to 2012,this paper analyses the variation rates of the tunnel site leveling observation results and the difference of annual change rates of the cross fault level observations at Hongshan seismic station in Hutubi. This paper concludes the reliability of the Ni004 optical level used by the station and puts forward a proposal based on the analysis. This paper also explores the cross fault leveling research on the ground deformation in the region concerned on the basis of the historical observation of the cross fault level at Dafeng and the comparison results of the tunnel site leveling observation in Hutubi.
文摘On the basis of an electronic map_based hypermedia data model (EMBHDM),this paper makes a study on the technologies of nonlinear storage,organization,management and browsing of information as well as organization of data on the basis of the relationship between multimedia information of electronic maps. This paper first analyzes some features of electronic maps and hypermedia technology,and then illustrates the creation of EMBHDM with some examples.The tests show that this model can efficiently organize and express multimedia data.
基金supported by the National Research Foundation of Korea Grant funded by the Korea Ministry of Science and Technology under Grant No. 2012-0009228
文摘In this paper, we propose a new algorithm for temporally consistent depth map estimation to generate three-dimensional video. The proposed algorithm adaptively computes the matching cost using a temporal weighting function, which is obtained by block-based moving object detection and motion estimation with variable block sizes. Experimental results show that the proposed algorithm improves the temporal consistency of the depth video and reduces by about 38% both the flickering artefact in the synthesized view and the number of coding bits for depth video coding.
文摘In this paper, the authors present ConGrap, a novel contour detector for finding closed contours with semantic connections. Based on gradient-based edge detection, a Gradient Map is generated to store the orientation of every edge pixel. Using the edge image and the generated Gradient Map, ConGrap separates the image into semantic parts and objects. Each edge pixel is mapped to a contour by a three-stage hierarchical analysis of neighbored pixels and ensures the closing of contours. A final post-process of ConGrap extracts the contour borderlines and merges them, if they semantically relate to each other. In contrast to common edge and contour detections, ConGrap not only produces an edge image, but also provides additional information (e.g., the borderline pixel coordinates the bounding box, etc.) for every contour. Additionally, the resulting contour image provides closed contours without discontinuities and merged regions with semantic connections. Consequently, the ConGrap contour image can be seen as an enhanced edge image as well as a kind of segmentation and object recognition.