The effect of ground properties with heat conduction between soil and ground loop heat exchangers(GLHEs)has been analyzed.A finite line source model proposed by Cui,Yang,and Fang is used.Far field radius is defined.Th...The effect of ground properties with heat conduction between soil and ground loop heat exchangers(GLHEs)has been analyzed.A finite line source model proposed by Cui,Yang,and Fang is used.Far field radius is defined.The analyses for a 1.5m borehole line source in three kinds of soil conditions:damp and breeze(D.B.),damp and heavy(D.H.),and saturated and heavy(S.H.)are carried out.The results of the comparisons show that in the condition of continuous operation,the variation of the far field radius is related to soil thermal conductivity.The rate of heat transfer will decrease after long time operation.And then soil condition will not influence the far field radius obviously.展开更多
Geothermal heat pumps (GHPs) are an attractive proposition for renewable energy worldwide as it uses energy naturally stored in the earth. The Earth is a very resourceful form of energy, using the natural solar ener...Geothermal heat pumps (GHPs) are an attractive proposition for renewable energy worldwide as it uses energy naturally stored in the earth. The Earth is a very resourceful form of energy, using the natural solar energy collection and heat storage capabilities as an infinite heat source/heat sink at the base of permeable pavements, which can provide excellent temperature gradients for GHP's. Experimental rigs were setup up at The University of Edinbttrgh for a combined permeable pavement and GHP system. At the base of a pavement structure (approximately 1 meter) below the ground's surface, temperatures are constant of 10℃ in the U.K all year round. The GHP performance efficiency was analysed by the coefficient of performance (COP) in a heating cycle and the energy efficiency ratio (EER) in a cooling cycle. The mean COP and EER for both systems averaged between 2-4.5 and 3-5 respectively. The combined GHP and pavement structure operated at an optimum efficiency for both heating and cooling cycles and has shown to be unaffected by higher summer or lower winter temperatures. This hybrid system is an attractive renewable energy technology and has additional environmental benefits such as urban runoff reuse and recycling.展开更多
The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of t...The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of the fastest growing applications of renewable energy in the world with annual increases of 10 % and much faster in China. With high coefficient of performance (COP) up to 6, GHPs make efficiency of primary energy more than 240 % with assumed a 40 % of electricity generation efficiency, which means energy savings and CO2 emission reduction. In this paper,the geothermal resources and its utilization are talked about, and GHPs technology was introduced. Due to its high efficiency, there will be energy savings by using GHPs. There is also CO2 emission reduction because of using geothermal heat pumps, which is analyzed in the end.展开更多
基金Key Discipline Program of Donghua University,China
文摘The effect of ground properties with heat conduction between soil and ground loop heat exchangers(GLHEs)has been analyzed.A finite line source model proposed by Cui,Yang,and Fang is used.Far field radius is defined.The analyses for a 1.5m borehole line source in three kinds of soil conditions:damp and breeze(D.B.),damp and heavy(D.H.),and saturated and heavy(S.H.)are carried out.The results of the comparisons show that in the condition of continuous operation,the variation of the far field radius is related to soil thermal conductivity.The rate of heat transfer will decrease after long time operation.And then soil condition will not influence the far field radius obviously.
文摘Geothermal heat pumps (GHPs) are an attractive proposition for renewable energy worldwide as it uses energy naturally stored in the earth. The Earth is a very resourceful form of energy, using the natural solar energy collection and heat storage capabilities as an infinite heat source/heat sink at the base of permeable pavements, which can provide excellent temperature gradients for GHP's. Experimental rigs were setup up at The University of Edinbttrgh for a combined permeable pavement and GHP system. At the base of a pavement structure (approximately 1 meter) below the ground's surface, temperatures are constant of 10℃ in the U.K all year round. The GHP performance efficiency was analysed by the coefficient of performance (COP) in a heating cycle and the energy efficiency ratio (EER) in a cooling cycle. The mean COP and EER for both systems averaged between 2-4.5 and 3-5 respectively. The combined GHP and pavement structure operated at an optimum efficiency for both heating and cooling cycles and has shown to be unaffected by higher summer or lower winter temperatures. This hybrid system is an attractive renewable energy technology and has additional environmental benefits such as urban runoff reuse and recycling.
文摘The renewable energy will play significant role in the world primary energy consumption in the future. Geothermal energy is immense with 5 000 EJ/a of technical potential, and geothermal heat pumps (GHPs) are one of the fastest growing applications of renewable energy in the world with annual increases of 10 % and much faster in China. With high coefficient of performance (COP) up to 6, GHPs make efficiency of primary energy more than 240 % with assumed a 40 % of electricity generation efficiency, which means energy savings and CO2 emission reduction. In this paper,the geothermal resources and its utilization are talked about, and GHPs technology was introduced. Due to its high efficiency, there will be energy savings by using GHPs. There is also CO2 emission reduction because of using geothermal heat pumps, which is analyzed in the end.