Underground coal mining inevitably results in land surface subsidence.Acquiring information on land surface subsidence is important in the detection of surface change.However,conventional data acquisition techniques c...Underground coal mining inevitably results in land surface subsidence.Acquiring information on land surface subsidence is important in the detection of surface change.However,conventional data acquisition techniques cannot always retrieve information on whole subsidence area.This study focuses on the reconstruction of a digital elevation model(DEM) with terrestrial laser scanning(TLS) point cloud data.Firstly,the methodology of the DEM with terrestrial 3-dimensional laser scanning is introduced.Then,a DEM modeling approach that involves the application of curved non-uniform rational B-splines(NURBS) surface is put forward.Finally,the performance of the DEM modeling approach with different surface inverse methods is demonstrated.The results indicate that the DEM based on the point cloud data and curved NURBS surface can achieve satisfactory accuracy.In addition,the performance of the hyperbolic paraboloid appears to be better than that of the elliptic paraboloid.The reconstructed DEM is continuous and can easily be integrated into other programs.Such features are of great importance in monitoring dynamic ground surface subsidence.展开更多
A formulation of the multi degree of freedom equations of motion for damper connected adjacent multi story buildings under earthquake excitation is presented.The ground acceleration due to e...A formulation of the multi degree of freedom equations of motion for damper connected adjacent multi story buildings under earthquake excitation is presented.The ground acceleration due to earthquake is regarded as a stochastic process,and a pseudo excitation algorithm in frequency domain is implemented in a computer program to handle the non orthogonal damping properties of the system.The effectiveness of joint dampers is then investigated in terms of the reduction of displacement,acceleration and shear force responses of adjacent buildings.展开更多
The dynamic failure mode and energybased identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Tran...The dynamic failure mode and energybased identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Transform(HHT) marginal spectrum.The results show that variations in the peak values of marginal spectra can clearly indicate the process of dynamic damage development inside the model slope.The identification results of marginal spectra closely coincide with the monitoring results of slope face displacement in the test.When subjected to the earthquake excitation with 0.1 g and 0.2 g amplitudes,no seismic damage is observed in the model slope,while the peak values of marginal spectra increase linearly with increasing slope height.In the case of 0.3 g seismic excitation,dynamic damage occurs near the slope crest and some rock blocks fall off the slope crest.When the seismic excitation reaches 0.4 g,the dynamic damage inside the model slope extends to the part with relative height of 0.295-0.6,and minor horizontal cracks occur in the middle part of the model slope.When the seismic excitation reaches 0.6 g,the damage further extends to the slope toe,and the damage inside the model slope extends to the part with relative height below 0.295,and the upper part(near the relative height of 0.8) slides outwards.Longitudinal fissures appear in the slope face,which connect with horizontal cracks,the weak intercalated layers at middle slope height are extruded out and the slope crest breaks up.The marginal spectrum identification results demonstrate that the dynamic damage near the slope face is minor as compared with that inside the model slope.The dynamic failure mode of counter-bedding rock slope with weak intercalated layers is extrusion and sliding at the middle rock strata.The research results of this paper are meaningful for the further understanding of the dynamic failure mode of counter-bedding rock slope with weak intercalated layers.展开更多
A practical suspen-dome project, Changzhou Gym roof, is adopted as an example and its transient analysis based on the multi-support excitations of the earthquake wave is carried out. Compared with the single support e...A practical suspen-dome project, Changzhou Gym roof, is adopted as an example and its transient analysis based on the multi-support excitations of the earthquake wave is carried out. Compared with the single support excitation, the position and value of the maximum stress under multi-support excitations both change and the amount of elements with obvious changes is large and more than 70% of the total. Moreover, when other terms are not changed, this influence will decrease as the span decreases, but increa...展开更多
The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dea...The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dealing with the failure analysis of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheets including bond slip of the anchored reinforcing bars at the foot of the columns is presented. It is based on the yield design theory with a mixed modeling of the structure, according to which the concrete material is treated as a classical two dimensional continuum, whereas the longitudinal reinforcing bars are regarded as one dimensional rods including bond slip at the foot of the columns. In shear reinforced zones both the shear CFRP sheets and transverse reinforcing bars are incorporated in the analysis through a homogenization procedure and they are only in tension. The approach is then implemented numerically by means of the finite element formulation. The numerical procedure produces accurate estimates for the loading carrying capacity of the shear members taken as an illustrative application by correlation with the experimental results, so the proposed approach is valid.展开更多
In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis,...In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis, using the intelligent images made from high resolution DEM(Digital Elevation Model). This method is useful to extract the small ground displacement where the surface shape was not intensely deformed.展开更多
In order to investigate the effect of a weak intercalation on slope stability, a large-scale shaking table model test was conducted to study the dynamic response of rock slope models with weak intercalation.The dynami...In order to investigate the effect of a weak intercalation on slope stability, a large-scale shaking table model test was conducted to study the dynamic response of rock slope models with weak intercalation.The dynamic response of the prototype slopes were studied in laboratory with the consideration of law of similitude. The initiation failure was observed in the rock slope model with a counter-tilt thin-weak intercalation firstly, not in the slope model with a horizontal thin-weak intercalation. Furthermore, it was interesting that the fracture site is shifted from crest top to the slope surface near the weak intercalation, which is different with the location of failure position in a normal layered slope. We also discussed the effect of the dip angle and the thickness of weak intercalation on the failure mechanism and instability mode of the layered rock slope. From the experimental result, it was noted that the stability of the slope with a counter-tilt weak intercalation could be worse than that of the other slopes under seismic excitation. The findings showed the difference of failure in slopes with a horizontal and counter weak intercalation, and implicated the further evaluation of failure of layered slopes caused by seismic loads.展开更多
The prospect of employing Light Amplification by Stimulated Emission of Radiation(LASER) for well drilling in oil and gas industry was examined.In this work,the experimental works carried out on various oil well drill...The prospect of employing Light Amplification by Stimulated Emission of Radiation(LASER) for well drilling in oil and gas industry was examined.In this work,the experimental works carried out on various oil well drilling operations was discussed.The results show that,LASER or LASER-aided oil and gas well drilling has many potential advantages over conventional rotary drilling,including high penetration rate,reduction or elimination of tripping,casing,bit costs,enhanced well control,as well as perforating and side-tracking capabilities.The investigation also reveals that modern infrared LASERs have a higher rate of rock cuttings removal than that of conventional rotary drilling and flame-jet spallation.It also reveals that LASER can destroy rock without damaging formation permeability but rather,it enhances or improves permeability and that permeability and porosity increases in all rock types.The paper has therefore provided more knowledge on the potential value to drilling operations and techniques using LASER.展开更多
A thin GaN LED film, grown on 2-inch-diameter sapphire substrates, is separated by laser lift-off. Atom force microscopy (AFM) and the double-crystal X-ray diffraction (XRD) have been employed to characterize the ...A thin GaN LED film, grown on 2-inch-diameter sapphire substrates, is separated by laser lift-off. Atom force microscopy (AFM) and the double-crystal X-ray diffraction (XRD) have been employed to characterize the performance of Gan before and after the lift-off process. It is demonstrated that the separation and transfer processes do not alter the crystal quality of the GaN films obviously. InGaN/GaN multi-quantum-wells (MQW's) structure is grown on the separated sapphire substrate later and is compared with that grown on the conventional substmte under the same condition by using PL and XRD spectrum.展开更多
By using the digital observations of the pendulum tiltmeter, water tube tiltmeter,extensometer and volumetric strainmeter at Huzhou station and with the power spectrum density estimation method,we acquired the_0S_5-_0...By using the digital observations of the pendulum tiltmeter, water tube tiltmeter,extensometer and volumetric strainmeter at Huzhou station and with the power spectrum density estimation method,we acquired the_0S_5-_0S_50 fundamental sphere free oscillations caused by the Japan earthquake on March 11,2011,then compared it with the PREM model. The relative errors are mostly bigger than 1.2‰. The extensometer and volume strainmeter can clearly detect _0S_2,_0S_3and_0S_4,which are closely related to the deep structure and earth's interior.展开更多
The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displ...The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displacement input model for structural seismic analysis under the multi-support excitations was used to calculate structural dynamic response.In the analysis,pounding between adjacent deck segments was considered.The seismic response of a multi-span bridge subjected to the multi-support excitation,considering not only the traveling-wave effect and partial coherence effect,but also the seismic non-stationary characteristics of multi-support earthquake motion,was simulated using finite element method(FEM).Meanwhile,the seismic response of the bridge under uniform earthquake was also analyzed.Finally,comparative analysis was conducted and some calculation results were shown for pounding effect,under multi-dimensional and multi-support earthquake motion,when performing seismic response analysis of multi-span bridge.Compared with the case of uniform/multi-support/multi-support and multi-dimensional earthquake input,the maximum values of pounding force in the case of multi-support and multi-dimensional earthquake input increase by about 5 8 times;the absolute value of bottom moment and shear force of piers increase by about50%600%and 23.1%900%,respectively.A conclusion can be given that it is very necessary to consider the pounding effect under multi-dimensional and multi-support earthquake motion while performing seismic response analysis of multi-span bridge.展开更多
A field experiment of nocturnal mountain wind and corresponding particulate matter (PM) evolution under weak synoptic forcing at five sites within urban Beijing was conducted using a moving Doppler wind lidar and a ...A field experiment of nocturnal mountain wind and corresponding particulate matter (PM) evolution under weak synoptic forcing at five sites within urban Beijing was conducted using a moving Doppler wind lidar and a fixed tower. Clear wind shear and zero-horizontal-wind zones at 40-320 m above the ground with a delay of 1.5 h were found at two sites between 20 km from north to south urban Beijing. The wind speed and height of the low-level jet at the north urban Beijing site were greater than those at the east urban Beijing site. The average horizontal distribution of low-level PM at 240 m was similar to the ground-level PM at night. The PM2.s (aerodynamic diameter ≤2.5 μm) accumulation center showed no abrupt changes with a shift in wind direction until the northerly wind jet arrived.展开更多
The seismic behavior of frames with semi rigid connections and rotational dampers is examined.The ground acceleration due to earthquake is regarded as a stochastic process,and a pseudo excitation algorithm in frequen...The seismic behavior of frames with semi rigid connections and rotational dampers is examined.The ground acceleration due to earthquake is regarded as a stochastic process,and a pseudo excitation algorithm in frequency domain is implemented in a computer program to handle non orthogonal damping properties of the system.The computer program which incorporates detailed connection models and rotational damping models is used to investigate the effect of the connection of the semi rigid frame.It is shown from analytical studies that semi rigid frames with rotational dampers improve the seismic response of the building and may provide an effective and reliable earthquake resistant design solution.展开更多
The localized differential quadrature (LDQ) method is a numerical technique with high accuracy for solving most kinds of nonlinear problems in engineering and can overcome the difficulties of other methods (such as di...The localized differential quadrature (LDQ) method is a numerical technique with high accuracy for solving most kinds of nonlinear problems in engineering and can overcome the difficulties of other methods (such as difference method) to numerically evaluate the derivatives of the functions.Its high efficiency and accuracy attract many engineers to apply the method to solve most of the numerical problems in engineering.However,difficulties can still be found in some particular problems.In the following study,the LDQ was applied to solve the Sod shock tube problem.This problem is a very particular kind of problem,which challenges many common numerical methods.Three different examples were given for testing the robustness and accuracy of the LDQ.In the first example,in which common initial conditions and solving methods were given,the numerical oscillations could be found dramatically;in the second example,the initial conditions were adjusted appropriately and the numerical oscillations were less dramatic than that in the first example;in the third example,the momentum equation of the Sod shock tube problem was corrected by adding artificial viscosity,causing the numerical oscillations to nearly disappear in the process of calculation.The numerical results presented demonstrate the detailed difficulties encountered in the calculations,which need to be improved in future work.However,in summary,the localized differential quadrature is shown to be a trustworthy method for solving most of the nonlinear problems in engineering.展开更多
This paper demonstrates an experiment on the generation of 3D virtual geographic environment on the basis of experimental flight laser scanning data by a set of algorithms and methods that were developed to automatica...This paper demonstrates an experiment on the generation of 3D virtual geographic environment on the basis of experimental flight laser scanning data by a set of algorithms and methods that were developed to automatically interpret range images for extracting geo-spatial features and then to reconstruct geo-objects. The algorithms and methods for the interpretation and modeling of laser scanner data include triangulated-irregular-network (TIN)-based range image interpolation; mathematical-morphology (MM)-based range image filtering, feature extraction and range image segmentation, feature generalization and optimization, 3D objects reconstruction and modeling; computer-graphics (CG)-based visualization and animation of geographic virtual reality environment.展开更多
This paper presents a statistically refined Bouc-Wen model of tri-axial interactions for the identification of structural systems under tri-directional seismic excitations. Through limited vibration measurements in th...This paper presents a statistically refined Bouc-Wen model of tri-axial interactions for the identification of structural systems under tri-directional seismic excitations. Through limited vibration measurements in the National Center for Research on Earthquake Engineering in Taiwan conducting model-based experiments, the 3-D Bouc-Wen model has been statistically and repetitively refined using the 95% confidence interval of the estimated structural parameters to determine their statistical significance in a multiple regression setting. When the parameters' confidence interval covers the "null" value, it is statistically sustainable to truncate such parameters. The remaining parameters will repetitively undergo such parameter sifting process for model refinement until all the parameters' statistical significance cannot be further improved. The effectiveness of the refined model has been shown considering the effects of sampling errors, of coupled restoring forces in tri-directions, and of the under-over-parameterization of structural systems. Sifted and estimated parameters such as the stiffness, and its corresponding natural frequency, resulting from the identification methodology developed in this study are carefully observed for system vibration control.展开更多
in geotechnical engineering, numerical simulation of problems is of great importance. This work proposes a new formulation of coupled finite-infinite elements which can be used in numerical simulation ofgeotechnical p...in geotechnical engineering, numerical simulation of problems is of great importance. This work proposes a new formulation of coupled finite-infinite elements which can be used in numerical simulation ofgeotechnical problems in both static and dynamic conditions. Formulation and various implementation aspects of the proposed coupled finite-infinite elements are carefully discussed. To the authors' knowledge, this approach that considers coupled finite-infinite elements is more efficient in the sense that appropriate and accurate results are obtained by using less elements. The accuracy and efficiency of the proposed approach is considered by comparing the obtained results with analytical and numerical results. In a static case, the problem of circular domain ol infinite length is considered. In a dynamic case, one dimensional wave propagation problems arising from the Heaviside step fimction and impulse functions are considered. In order to get a more complete picture, two dimensional wave propagation in a circular qtmrter space is considered and the results are presented. Finally, a soil-structure interaction system subjected to seismic excitation is analyzed. In the analysis of soil-structure interaction phenomenon, frames with different number of storeys and soil media with various stiffness characteristics have been taken into consideration. In the analysis, the finite element software ANSYS has been used. For the newly developed infinite element, the programming has been done by the help of the User Programmable Features of the ANSYS software, which enable creating new elements in the ANSYS software.展开更多
Offshore platforms in seismically active areas should be designed to service severe earthquake excitations with no global structural failure. This paper summarizes the dynamic analysis of a typical fixed platform unde...Offshore platforms in seismically active areas should be designed to service severe earthquake excitations with no global structural failure. This paper summarizes the dynamic analysis of a typical fixed platform under the earthquake loading in the seismically active area. The dynamic analysis includes interpretation of dynamic design parameters based on the available site-specific data,together with foundation design recommendations for earthquake loading conditions,which include free-field site response analyses,liquefaction analyses and soil-pile interaction analyses.展开更多
Digitizing road maps manually is an expensive and time-consuming task. Several methods that intend to develop fully or semi-automated systems have been proposed. In this work we introduce a method, based on the Radon ...Digitizing road maps manually is an expensive and time-consuming task. Several methods that intend to develop fully or semi-automated systems have been proposed. In this work we introduce a method, based on the Radon transform and optimal algorithms, which extracts automatically roads on images of rural areas, images that were acquired by digital cameras and airborne laser scanners. The proposed method detects linear segments iteratively and starting from this it generates the centerlines of the roads. The method is based on an objective function which depends on three parameters related to the correlation between the cross-sections, spectral similarity and directions of the segments. Different tests were performed using aerial photos, Ikonos images and laser scanner data of an area located in the state of Parana (Brazil) and their results are presented and discussed. The quality of the detection of the roads centerlines was computed using several indexes - completeness, correctness and RMS. The values obtained reveal the good performance of the proposed methodology.展开更多
基金Project(51174206)supported by the National Natural Science Foundation of ChinaProject(2014ZDPY29)supported by the Fundamental Research Funds for the Central UniversitiesProject(SZBF 2011-6-B35)supported by the Priority Academic Program Development of Higher Education Institutions(PAPD)of Jiangsu Province,China
文摘Underground coal mining inevitably results in land surface subsidence.Acquiring information on land surface subsidence is important in the detection of surface change.However,conventional data acquisition techniques cannot always retrieve information on whole subsidence area.This study focuses on the reconstruction of a digital elevation model(DEM) with terrestrial laser scanning(TLS) point cloud data.Firstly,the methodology of the DEM with terrestrial 3-dimensional laser scanning is introduced.Then,a DEM modeling approach that involves the application of curved non-uniform rational B-splines(NURBS) surface is put forward.Finally,the performance of the DEM modeling approach with different surface inverse methods is demonstrated.The results indicate that the DEM based on the point cloud data and curved NURBS surface can achieve satisfactory accuracy.In addition,the performance of the hyperbolic paraboloid appears to be better than that of the elliptic paraboloid.The reconstructed DEM is continuous and can easily be integrated into other programs.Such features are of great importance in monitoring dynamic ground surface subsidence.
文摘A formulation of the multi degree of freedom equations of motion for damper connected adjacent multi story buildings under earthquake excitation is presented.The ground acceleration due to earthquake is regarded as a stochastic process,and a pseudo excitation algorithm in frequency domain is implemented in a computer program to handle the non orthogonal damping properties of the system.The effectiveness of joint dampers is then investigated in terms of the reduction of displacement,acceleration and shear force responses of adjacent buildings.
基金financially supported by the National Basic Research Program (973 Program) of the Ministry of Science and Technology of the People's Republic of China (Grant No.2011CB013605)the Research Program of Ministry of Transport of the People's Republic of China (Grant No.2013318800020)
文摘The dynamic failure mode and energybased identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Transform(HHT) marginal spectrum.The results show that variations in the peak values of marginal spectra can clearly indicate the process of dynamic damage development inside the model slope.The identification results of marginal spectra closely coincide with the monitoring results of slope face displacement in the test.When subjected to the earthquake excitation with 0.1 g and 0.2 g amplitudes,no seismic damage is observed in the model slope,while the peak values of marginal spectra increase linearly with increasing slope height.In the case of 0.3 g seismic excitation,dynamic damage occurs near the slope crest and some rock blocks fall off the slope crest.When the seismic excitation reaches 0.4 g,the dynamic damage inside the model slope extends to the part with relative height of 0.295-0.6,and minor horizontal cracks occur in the middle part of the model slope.When the seismic excitation reaches 0.6 g,the damage further extends to the slope toe,and the damage inside the model slope extends to the part with relative height below 0.295,and the upper part(near the relative height of 0.8) slides outwards.Longitudinal fissures appear in the slope face,which connect with horizontal cracks,the weak intercalated layers at middle slope height are extruded out and the slope crest breaks up.The marginal spectrum identification results demonstrate that the dynamic damage near the slope face is minor as compared with that inside the model slope.The dynamic failure mode of counter-bedding rock slope with weak intercalated layers is extrusion and sliding at the middle rock strata.The research results of this paper are meaningful for the further understanding of the dynamic failure mode of counter-bedding rock slope with weak intercalated layers.
基金Supported by National Natural Science Foundation of China (No. 50778122)Program for New Century Excellent Talents in University (NCET)
文摘A practical suspen-dome project, Changzhou Gym roof, is adopted as an example and its transient analysis based on the multi-support excitations of the earthquake wave is carried out. Compared with the single support excitation, the position and value of the maximum stress under multi-support excitations both change and the amount of elements with obvious changes is large and more than 70% of the total. Moreover, when other terms are not changed, this influence will decrease as the span decreases, but increa...
文摘The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dealing with the failure analysis of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheets including bond slip of the anchored reinforcing bars at the foot of the columns is presented. It is based on the yield design theory with a mixed modeling of the structure, according to which the concrete material is treated as a classical two dimensional continuum, whereas the longitudinal reinforcing bars are regarded as one dimensional rods including bond slip at the foot of the columns. In shear reinforced zones both the shear CFRP sheets and transverse reinforcing bars are incorporated in the analysis through a homogenization procedure and they are only in tension. The approach is then implemented numerically by means of the finite element formulation. The numerical procedure produces accurate estimates for the loading carrying capacity of the shear members taken as an illustrative application by correlation with the experimental results, so the proposed approach is valid.
文摘In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis, using the intelligent images made from high resolution DEM(Digital Elevation Model). This method is useful to extract the small ground displacement where the surface shape was not intensely deformed.
基金financially supported by the Research and Innovation Team of Chengdu University of TechnologyProject of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No. SKLGP2013Z002)
文摘In order to investigate the effect of a weak intercalation on slope stability, a large-scale shaking table model test was conducted to study the dynamic response of rock slope models with weak intercalation.The dynamic response of the prototype slopes were studied in laboratory with the consideration of law of similitude. The initiation failure was observed in the rock slope model with a counter-tilt thin-weak intercalation firstly, not in the slope model with a horizontal thin-weak intercalation. Furthermore, it was interesting that the fracture site is shifted from crest top to the slope surface near the weak intercalation, which is different with the location of failure position in a normal layered slope. We also discussed the effect of the dip angle and the thickness of weak intercalation on the failure mechanism and instability mode of the layered rock slope. From the experimental result, it was noted that the stability of the slope with a counter-tilt weak intercalation could be worse than that of the other slopes under seismic excitation. The findings showed the difference of failure in slopes with a horizontal and counter weak intercalation, and implicated the further evaluation of failure of layered slopes caused by seismic loads.
文摘The prospect of employing Light Amplification by Stimulated Emission of Radiation(LASER) for well drilling in oil and gas industry was examined.In this work,the experimental works carried out on various oil well drilling operations was discussed.The results show that,LASER or LASER-aided oil and gas well drilling has many potential advantages over conventional rotary drilling,including high penetration rate,reduction or elimination of tripping,casing,bit costs,enhanced well control,as well as perforating and side-tracking capabilities.The investigation also reveals that modern infrared LASERs have a higher rate of rock cuttings removal than that of conventional rotary drilling and flame-jet spallation.It also reveals that LASER can destroy rock without damaging formation permeability but rather,it enhances or improves permeability and that permeability and porosity increases in all rock types.The paper has therefore provided more knowledge on the potential value to drilling operations and techniques using LASER.
基金the National Natural Science Foundation of China (No.60276029)the 863 Project ( 2004AA3 11020 and 2006AA032409)Natural Science Foundation of Fujian Province (2006H0092,A0210006,and 2005HZ1018).
文摘A thin GaN LED film, grown on 2-inch-diameter sapphire substrates, is separated by laser lift-off. Atom force microscopy (AFM) and the double-crystal X-ray diffraction (XRD) have been employed to characterize the performance of Gan before and after the lift-off process. It is demonstrated that the separation and transfer processes do not alter the crystal quality of the GaN films obviously. InGaN/GaN multi-quantum-wells (MQW's) structure is grown on the separated sapphire substrate later and is compared with that grown on the conventional substmte under the same condition by using PL and XRD spectrum.
基金funded by the“Three-in-One”subject of China Earthquake Administration(201324)the Science and Technology Projects of Earthquake Administration of Zhejiang Province(2015ZJJ03)
文摘By using the digital observations of the pendulum tiltmeter, water tube tiltmeter,extensometer and volumetric strainmeter at Huzhou station and with the power spectrum density estimation method,we acquired the_0S_5-_0S_50 fundamental sphere free oscillations caused by the Japan earthquake on March 11,2011,then compared it with the PREM model. The relative errors are mostly bigger than 1.2‰. The extensometer and volume strainmeter can clearly detect _0S_2,_0S_3and_0S_4,which are closely related to the deep structure and earth's interior.
基金Project(51078242)supported by the National Natural Science Foundation of China
文摘The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displacement input model for structural seismic analysis under the multi-support excitations was used to calculate structural dynamic response.In the analysis,pounding between adjacent deck segments was considered.The seismic response of a multi-span bridge subjected to the multi-support excitation,considering not only the traveling-wave effect and partial coherence effect,but also the seismic non-stationary characteristics of multi-support earthquake motion,was simulated using finite element method(FEM).Meanwhile,the seismic response of the bridge under uniform earthquake was also analyzed.Finally,comparative analysis was conducted and some calculation results were shown for pounding effect,under multi-dimensional and multi-support earthquake motion,when performing seismic response analysis of multi-span bridge.Compared with the case of uniform/multi-support/multi-support and multi-dimensional earthquake input,the maximum values of pounding force in the case of multi-support and multi-dimensional earthquake input increase by about 5 8 times;the absolute value of bottom moment and shear force of piers increase by about50%600%and 23.1%900%,respectively.A conclusion can be given that it is very necessary to consider the pounding effect under multi-dimensional and multi-support earthquake motion while performing seismic response analysis of multi-span bridge.
基金supported by the National Natural Science Foundation of China[grant number 91544221],[grant number41571130024],[grant number 41675137],[grant number41505091]the LAPC Free Exploration Fund
文摘A field experiment of nocturnal mountain wind and corresponding particulate matter (PM) evolution under weak synoptic forcing at five sites within urban Beijing was conducted using a moving Doppler wind lidar and a fixed tower. Clear wind shear and zero-horizontal-wind zones at 40-320 m above the ground with a delay of 1.5 h were found at two sites between 20 km from north to south urban Beijing. The wind speed and height of the low-level jet at the north urban Beijing site were greater than those at the east urban Beijing site. The average horizontal distribution of low-level PM at 240 m was similar to the ground-level PM at night. The PM2.s (aerodynamic diameter ≤2.5 μm) accumulation center showed no abrupt changes with a shift in wind direction until the northerly wind jet arrived.
文摘The seismic behavior of frames with semi rigid connections and rotational dampers is examined.The ground acceleration due to earthquake is regarded as a stochastic process,and a pseudo excitation algorithm in frequency domain is implemented in a computer program to handle non orthogonal damping properties of the system.The computer program which incorporates detailed connection models and rotational damping models is used to investigate the effect of the connection of the semi rigid frame.It is shown from analytical studies that semi rigid frames with rotational dampers improve the seismic response of the building and may provide an effective and reliable earthquake resistant design solution.
文摘The localized differential quadrature (LDQ) method is a numerical technique with high accuracy for solving most kinds of nonlinear problems in engineering and can overcome the difficulties of other methods (such as difference method) to numerically evaluate the derivatives of the functions.Its high efficiency and accuracy attract many engineers to apply the method to solve most of the numerical problems in engineering.However,difficulties can still be found in some particular problems.In the following study,the LDQ was applied to solve the Sod shock tube problem.This problem is a very particular kind of problem,which challenges many common numerical methods.Three different examples were given for testing the robustness and accuracy of the LDQ.In the first example,in which common initial conditions and solving methods were given,the numerical oscillations could be found dramatically;in the second example,the initial conditions were adjusted appropriately and the numerical oscillations were less dramatic than that in the first example;in the third example,the momentum equation of the Sod shock tube problem was corrected by adding artificial viscosity,causing the numerical oscillations to nearly disappear in the process of calculation.The numerical results presented demonstrate the detailed difficulties encountered in the calculations,which need to be improved in future work.However,in summary,the localized differential quadrature is shown to be a trustworthy method for solving most of the nonlinear problems in engineering.
文摘This paper demonstrates an experiment on the generation of 3D virtual geographic environment on the basis of experimental flight laser scanning data by a set of algorithms and methods that were developed to automatically interpret range images for extracting geo-spatial features and then to reconstruct geo-objects. The algorithms and methods for the interpretation and modeling of laser scanner data include triangulated-irregular-network (TIN)-based range image interpolation; mathematical-morphology (MM)-based range image filtering, feature extraction and range image segmentation, feature generalization and optimization, 3D objects reconstruction and modeling; computer-graphics (CG)-based visualization and animation of geographic virtual reality environment.
文摘This paper presents a statistically refined Bouc-Wen model of tri-axial interactions for the identification of structural systems under tri-directional seismic excitations. Through limited vibration measurements in the National Center for Research on Earthquake Engineering in Taiwan conducting model-based experiments, the 3-D Bouc-Wen model has been statistically and repetitively refined using the 95% confidence interval of the estimated structural parameters to determine their statistical significance in a multiple regression setting. When the parameters' confidence interval covers the "null" value, it is statistically sustainable to truncate such parameters. The remaining parameters will repetitively undergo such parameter sifting process for model refinement until all the parameters' statistical significance cannot be further improved. The effectiveness of the refined model has been shown considering the effects of sampling errors, of coupled restoring forces in tri-directions, and of the under-over-parameterization of structural systems. Sifted and estimated parameters such as the stiffness, and its corresponding natural frequency, resulting from the identification methodology developed in this study are carefully observed for system vibration control.
文摘in geotechnical engineering, numerical simulation of problems is of great importance. This work proposes a new formulation of coupled finite-infinite elements which can be used in numerical simulation ofgeotechnical problems in both static and dynamic conditions. Formulation and various implementation aspects of the proposed coupled finite-infinite elements are carefully discussed. To the authors' knowledge, this approach that considers coupled finite-infinite elements is more efficient in the sense that appropriate and accurate results are obtained by using less elements. The accuracy and efficiency of the proposed approach is considered by comparing the obtained results with analytical and numerical results. In a static case, the problem of circular domain ol infinite length is considered. In a dynamic case, one dimensional wave propagation problems arising from the Heaviside step fimction and impulse functions are considered. In order to get a more complete picture, two dimensional wave propagation in a circular qtmrter space is considered and the results are presented. Finally, a soil-structure interaction system subjected to seismic excitation is analyzed. In the analysis of soil-structure interaction phenomenon, frames with different number of storeys and soil media with various stiffness characteristics have been taken into consideration. In the analysis, the finite element software ANSYS has been used. For the newly developed infinite element, the programming has been done by the help of the User Programmable Features of the ANSYS software, which enable creating new elements in the ANSYS software.
文摘Offshore platforms in seismically active areas should be designed to service severe earthquake excitations with no global structural failure. This paper summarizes the dynamic analysis of a typical fixed platform under the earthquake loading in the seismically active area. The dynamic analysis includes interpretation of dynamic design parameters based on the available site-specific data,together with foundation design recommendations for earthquake loading conditions,which include free-field site response analyses,liquefaction analyses and soil-pile interaction analyses.
文摘Digitizing road maps manually is an expensive and time-consuming task. Several methods that intend to develop fully or semi-automated systems have been proposed. In this work we introduce a method, based on the Radon transform and optimal algorithms, which extracts automatically roads on images of rural areas, images that were acquired by digital cameras and airborne laser scanners. The proposed method detects linear segments iteratively and starting from this it generates the centerlines of the roads. The method is based on an objective function which depends on three parameters related to the correlation between the cross-sections, spectral similarity and directions of the segments. Different tests were performed using aerial photos, Ikonos images and laser scanner data of an area located in the state of Parana (Brazil) and their results are presented and discussed. The quality of the detection of the roads centerlines was computed using several indexes - completeness, correctness and RMS. The values obtained reveal the good performance of the proposed methodology.