Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their for...Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their formation,which cannot occur on Earth due to the high climatic temperature.In this study,we propose an alternative mechanism that attrib-utes the araneiform formation to the erosion of upwelling salt water from the subsurface,relying on the identification of the first terrestrial analog found in a playa of the Qaidam Basin on the northern Tibetan Plateau.Morphological analysis indicates that the structures in the Qaidam Basin have fractal features comparable to araneiforms on Mars.A numerical model is developed to investigate the araneiform formation driven by the water-diffusion mechanism.The simulation res-ults indicate that the water-diffusion process,under varying ground conditions,may be responsible for the diverse aranei-form morphologies observed on both Earth and Mars.Our numerical simulations also demonstrate that the orientations of the saltwater diffusion networks are controlled by pre-existing polygonal cracks,which is consistent with observations of araneiforms on Mars and Earth.Our study thus suggests that a saltwater-related origin of the araneiform is possible and has significant implications for water searches on Mars.展开更多
Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Suc...Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Such models can be used to collect wideazimuth, multi-azimuth, and full-azimuth seismic data that can be used to verify various 3D processing and interpretation methods. Faced with nonideal imaging problems owing to the extensive complex surface conditions and subsurface structures in the oil-rich foreland basins of western China, we designed and built the KS physical model based on the complex subsurface structure. This is the largest and most complex 3D physical model built to date. The physical modeling technology advancements mainly involve 1) the model design method, 2) the model casting flow, and 3) data acquisition. A 3D velocity model of the physical model was obtained for the first time, and the model building precision was quantitatively analyzed. The absolute error was less than 3 mm, which satisfies the experimental requirements. The 3D velocity model obtained from 3D measurements of the model layers is the basis for testing various imaging methods. Furthermore, the model is considered a standard in seismic physical modeling technology.展开更多
Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. ...Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.展开更多
In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating t...In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating the geologically horizontal strata. We carried out physical modeling on the deformation and failure processes of roadways subjected to a plane loading scheme. Our laboratory tests were based on work which incorporated infrared (IR) detection, IR radiation temperature (IRT) statistics, image feature extraction and 2D Fourier transformation, from resulting thermographies. The IRT characterizes the mechanical responses from the roadway after loading with two stages, i.e., IRT evolving at higher levels corresponded to shallow mining (≤500 m) during which the roadway deformed gradually (referred to as the "steady deformation stage"); IRT evolving in a quasi-cyclical manner with multiple peaks corresponded to deep mining (800–2600 m), in which the failure mode for the roadway are dominated by breakage and collapse (called the "unsteady deformation stage"). The IR images and 2D Fourier spectra illustrate detailed information in terms of initiation, nucleation and coalescence of the damage to rock masses and the eventual failure of roadways subject to external loading.展开更多
Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of diff...Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of different methods are analyzed through standard sample experiment and the seismic physical modelling. Based on this, we proposed an improved method for improving accuracy of pulse transmission method, in which the samples with similar acoustic properties to the test sample are selected as the reference samples. We assess the stability and accuracy of the pulse transmission, pulse transmission insertion, and reflection wave methods for obtaining the quality factor Q using standard and reference samples and seismic physical modeling. The results suggest that the Q-values obtained by the pulse transmission method are strongly affected by diffraction and the error is 50% or greater, whereas the relative error of the improved pulse transmission method is about 10%. By using a theoretical diffraction correction method and the improved measurement method, the differences among the Q-measuring methods can be limited to within 10%.展开更多
Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulatio...Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulation of the acoustic wave equation to marine seismic modeling using the staggered-grid finite-difference method. The scheme is developed using a fourth-order spatial and a second-order temporal operator. Then, we define a stability coefficient (SC) and calculate its maximum value under the stability condition. Based on the dispersion relationship, we conduct a detailed dispersion analysis for submarine sediments in terms of the phase and group velocity over a range of angles, stability coefficients, and orders. We also compare the numerical solution with the exact solution for a P-wave line source in a homogeneous submarine model. Additionally, the numerical results determined by a Marmousi2 model with a rugged seafloor indicate that this method is sufficient for modeling complex submarine structures.展开更多
Excessive vibrations inside buildings in the Lihu New Village caused by the Shenzhen Metro Line 2 underground railway were investigated by conducting analyses of the tunnel,the track irregularities,the stiffness of th...Excessive vibrations inside buildings in the Lihu New Village caused by the Shenzhen Metro Line 2 underground railway were investigated by conducting analyses of the tunnel,the track irregularities,the stiffness of the fastening system,and the vibrations of the track system and the building at different speeds.A numerical simulation based on the dynamic coupling theory of the vehicle-track system was used to verify the experimental results.Suitable countermeasures were investigated.The results show that rail corrugation is the primary reason for the excessive vibration,and an increase in the stiffness of the vertical fastening system is the secondary reason.The solution was to eliminate the rail corrugation using rail grinding and decrease the vertical stiffness by changing the fastening system.The results of this study provide references for solving vibration problems caused by rail lines.展开更多
Based on the COHERENS model (a coupled hydrodynamic ecological model for regional and shelf seas), a numerical hydrodynamic model of the Hangzhou Bay, influenced by tide, regional winds and freshwater from the Yangtze...Based on the COHERENS model (a coupled hydrodynamic ecological model for regional and shelf seas), a numerical hydrodynamic model of the Hangzhou Bay, influenced by tide, regional winds and freshwater from the Yangtze River and the Qiantangjiang River was established. The Lagrangian particle tracking was simulated to provide tracer trajectories. For convenience, the modeling area was divided into 8 subdomains and the modeling focused on March (dry season) and July (wet season). Numerical simulation and analysis indicate that the tracer trajectories originated in different subdomains are quite different. Most particles released in the mouth of the bay move outside the bay quickly and reach the farthest place at 122.5°E; while particles released in the inner part of the bay mostly remain in the same subdomain, with only minor migrations in two opposite directions along the shore. The tracer experiments also indicate that the northwest region of the bay is an area where pollutant can easily accumulate in both wet and dry seasons, and that the southeast region of the bay is another area for pollutant to accumulate in dry season because it is the main path for the contaminant.展开更多
As dominant biomes,forests play an important and indispensable role in adjusting the global carbon balance under climate change.Therefore,there are scientific and political implications in investigating the carbon bud...As dominant biomes,forests play an important and indispensable role in adjusting the global carbon balance under climate change.Therefore,there are scientific and political implications in investigating the carbon budget of forest ecosystems and its response to climate change.Here we synthesized the most recent research progresses on the carbon cycle in terrestrial ecosystems,and applied an individual-based forest ecosystem carbon budget model for China(FORCCHN) to simulate the dynamics of the carbon fluxes of forest ecosystems in the northeastern China.The FORCCHN model was further improved and applied through adding variables and modules of precipitation(rainfall and snowfall) interception by tree crown,understory plants and litter.The results showed that the optimized FORCCHN model had a good performance in simulating the carbon budget of forest ecosystems in the northeastern China.From 1981 to 2002,the forests played a positive role in absorbing carbon dioxide.However,the capability of forest carbon sequestration had been gradually declining during the the same period.As for the average spatial distri-bution of net carbon budget,a majority of the regions were carbon sinks.Several scattered areas in the Heilongjiang Province and the Liaoning Province were identified as carbon sources.The net carbon budget was apparently more sensitive to an increase of air temperature than change of precipitation.展开更多
In recent years, super high-rise buildings (>500 m) are developing very quickly and become an important frontier of civil engineering. The collapse resistance of super high-rise buildings subjected to extremely str...In recent years, super high-rise buildings (>500 m) are developing very quickly and become an important frontier of civil engineering. The collapse resistance of super high-rise buildings subjected to extremely strong earthquake is a critical problem that must be intensively studied. This paper builds up a nonlinear finite element model of the tallest building in China, Shang- hai Tower (632 m), and proposes the modeling method and failure criteria for different structural elements. The dynamic char- acters of this building are then analyzed, and the possible failure modes and collapse processes due to earthquakes are pre- dicted, as well as the corresponding collapse mechanism. This work will be helpful in collapse prevention and the seismic design of super high-rise buildings.展开更多
The crustal structure of Xiachayu-Gonghe geophysical profile in eastern Tibetan plateau is simulated with Bouguer anomaly corrected for sediments and lithosphere. The forward simulation shows that the thickness of upp...The crustal structure of Xiachayu-Gonghe geophysical profile in eastern Tibetan plateau is simulated with Bouguer anomaly corrected for sediments and lithosphere. The forward simulation shows that the thickness of upper crust in eastem Tibetan plateau is about 20 km, and the density is 2.78 × 10^3 kg/m^3. The bottom interface of middle crust changes from 30 km to 40 km, the density of middle crust is 2.89 × 10^3 kg/m^3. The materials with low density of 2.78 × 10^3 kg/m^3 exist in middle crust, and those with high density of 3.33 × 10^3 kg/m^3 exist at the bottom of middle crust between Wenquan and Tanggemu. The density is 3.10× 10^3 kg/m^3 in lower crust. The shallowest depth of Moho interface is about 56 km, and the deepest one is about 74 km, the undulation of interface is large, the deep Moho is located in Xiachayu, Chayu, Nujiang, and Wenquan. The crustal density of eastern Tibetan plateau is larger than that of central section; the low velocity layers are located in middle crust and bottom in eastern Tibetan plateau and at the bottom of the upper crust in the central plateau.展开更多
The homologues temperature of a crystalline material is defined as T/Tm, where T is temperature and Tm is the melting (solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystal...The homologues temperature of a crystalline material is defined as T/Tm, where T is temperature and Tm is the melting (solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystalline materials. The melting temperature of olivine system, (Mg,Fe)2SiO4, decreases with increasing iron content and water content, and increases with confining pressure. At high pressure, phase transition will lead to a sharp change in the melting curve of olivine. After calibrating previous melting experiments on fayalite (Fe2SiO4), the triple point of fayalite-Fe2SiO4 spinel-liquid is determined to be at 6.4 GPa and 1793 K. Using the generalized means, the solidus and liquidus of dry olivine are described as a function of iron content and pressure up to 6.4 GPa. The change of T/Tm of olivine with depth allows us to compare the strength of the up- per mantle with different thermal states and olivine composition. The transition from semi-brittle to ductile deformation in the upper mantle occurs at a depth where T/Tm of olivine equals 0.5. The lithospheric mantle beneath cratons shows much smaller T/Tm of olivine than orogens and extensional basins until the lithosphere-asthenosphere boundary where T/Tm 〉 0.66, suggesting a stronger lithosphere beneath cratons. In addition, T/Tm is used to analyze deformation experiments on olivine. The results indicate that the effect of water on fabric transitions in olivine is closely related with pressure. The hydrogen-weakening effect and its relationship with T/Tm of olivine need further investigation. Below 6.4 GPa (〈200 kin), T/TIn of olivine controls the transition of dislocation glide from [100] slip to [001] slip. Under the strain rate of 10-12-10-15 s-1 and low stress in the upper mantle, the [100](010) slip system (A-type fabric) becomes dominant when T/TIn〉 0.55-0.60. When T/Tm〈 0.55-0.60, [001] slip is easier and low T/Tm favors the operation of [001](100) slip system (C-type fabric). This is consistent with the widely observed A-type olivine fabric in naturally deformed peridotites, and the C-type olivine fabric in peridotites that experienced deep subduction in ultrahigh-pressure metamorphic terranes. However, the B-type fabric will develop under high stress and relatively low T/Tm. Therefore, the homologues temperature of olivine established a bridge to extrapolate deformation experi- ments to rheology of the upper mantle. Seismic anisotropy of the upper mantle beneath cratons should be simulated using a four-layer model with the relic A-type fabric in the upper lithospheric mantle, the B-type fabric in the middle layer, the newly formed A- or B-type fabric near the lithosphere-asthenosphere boundary, and the asthenosphere dominated by diffusion creep below the Lehmann discontinuity. Knowledge about transition mechanisms of olivine fabrics is critical for tracing the water distribution and mantle flow from seismic anisotropy.展开更多
We investigated the effects of climate change on the distribution of the Asiatic ibex(Capra sibirica)in eastern Tajikistan.No existing climate change studies have been conducted on the habitat of a wild goat species i...We investigated the effects of climate change on the distribution of the Asiatic ibex(Capra sibirica)in eastern Tajikistan.No existing climate change studies have been conducted on the habitat of a wild goat species in Asia.We conducted ecological niche modelling to compare potential present and future distributions of suitable environmental conditions for ibex.Projecting to 2070,18%(2689 km^2)of the current suitable areas would be lost,mostly located in the southeastern and northwestern regions of the study area.However,new suitable habitats could expand outside the current ibex range—about 30%(4595 km^2)expansion until 2070.We found that the elevation,terrain roughness,seasonal temperature,and precipitation of warmest quarter were the most important factors in the models and had strong correlations to ibex distribution.The losses in the southeastern portion overlapped most of the current locations of ibex in that region.These losses were observed in the much lower elevations of the study area(3500 m to 4000 m).When considering both loss and gain,the ibex could see a net expansion to new suitable habitats.About 30%(1379 km^2)of the average habitat gains for the Asiatic ibex in 2070 showed a shift to northern lower temperature habitats.Our results are beneficial in planning for the potential effects on biodiversity conservation in the eastern mountain region of Tajikistan under climate change scenarios.Special attention should be given to the ibex populations in the southeastern region,where habitats could become unsuitable for the species as a result of the climate-induced effects on the mountain ecosystem.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB41000000)the Fundamental Research Funds for the Central Universities(WK2080000144)。
文摘Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their formation,which cannot occur on Earth due to the high climatic temperature.In this study,we propose an alternative mechanism that attrib-utes the araneiform formation to the erosion of upwelling salt water from the subsurface,relying on the identification of the first terrestrial analog found in a playa of the Qaidam Basin on the northern Tibetan Plateau.Morphological analysis indicates that the structures in the Qaidam Basin have fractal features comparable to araneiforms on Mars.A numerical model is developed to investigate the araneiform formation driven by the water-diffusion mechanism.The simulation res-ults indicate that the water-diffusion process,under varying ground conditions,may be responsible for the diverse aranei-form morphologies observed on both Earth and Mars.Our numerical simulations also demonstrate that the orientations of the saltwater diffusion networks are controlled by pre-existing polygonal cracks,which is consistent with observations of araneiforms on Mars and Earth.Our study thus suggests that a saltwater-related origin of the araneiform is possible and has significant implications for water searches on Mars.
基金sponsored by National Science and Technology Major Project(2011ZX05046-001)
文摘Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Such models can be used to collect wideazimuth, multi-azimuth, and full-azimuth seismic data that can be used to verify various 3D processing and interpretation methods. Faced with nonideal imaging problems owing to the extensive complex surface conditions and subsurface structures in the oil-rich foreland basins of western China, we designed and built the KS physical model based on the complex subsurface structure. This is the largest and most complex 3D physical model built to date. The physical modeling technology advancements mainly involve 1) the model design method, 2) the model casting flow, and 3) data acquisition. A 3D velocity model of the physical model was obtained for the first time, and the model building precision was quantitatively analyzed. The absolute error was less than 3 mm, which satisfies the experimental requirements. The 3D velocity model obtained from 3D measurements of the model layers is the basis for testing various imaging methods. Furthermore, the model is considered a standard in seismic physical modeling technology.
基金supported by the National Natural Science Foundation of China (Grant Nos.40334040 and 40974033)the Promoting Foundation for Advanced Persons of Talent of NCWU
文摘Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.
基金Projects 2006CB202200 supported by the Special Funds for the Major State Basic Research ProjectIRT0656 by the Innovative Team Development Project of the State Educational Ministry of China
文摘In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating the geologically horizontal strata. We carried out physical modeling on the deformation and failure processes of roadways subjected to a plane loading scheme. Our laboratory tests were based on work which incorporated infrared (IR) detection, IR radiation temperature (IRT) statistics, image feature extraction and 2D Fourier transformation, from resulting thermographies. The IRT characterizes the mechanical responses from the roadway after loading with two stages, i.e., IRT evolving at higher levels corresponded to shallow mining (≤500 m) during which the roadway deformed gradually (referred to as the "steady deformation stage"); IRT evolving in a quasi-cyclical manner with multiple peaks corresponded to deep mining (800–2600 m), in which the failure mode for the roadway are dominated by breakage and collapse (called the "unsteady deformation stage"). The IR images and 2D Fourier spectra illustrate detailed information in terms of initiation, nucleation and coalescence of the damage to rock masses and the eventual failure of roadways subject to external loading.
基金supported by the National Nature Science Foundation of China(No.41474112)the National Science and Technology Major Project(No.2017ZX05005-004)
文摘Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of different methods are analyzed through standard sample experiment and the seismic physical modelling. Based on this, we proposed an improved method for improving accuracy of pulse transmission method, in which the samples with similar acoustic properties to the test sample are selected as the reference samples. We assess the stability and accuracy of the pulse transmission, pulse transmission insertion, and reflection wave methods for obtaining the quality factor Q using standard and reference samples and seismic physical modeling. The results suggest that the Q-values obtained by the pulse transmission method are strongly affected by diffraction and the error is 50% or greater, whereas the relative error of the improved pulse transmission method is about 10%. By using a theoretical diffraction correction method and the improved measurement method, the differences among the Q-measuring methods can be limited to within 10%.
基金Supported by the National Natural Science Foundation of China(Nos. 41206043, 40930845)the Open Foundation of Key Laboratory of Marine Geology and Environment of Chinese Academy of Sciences(No. MGE2011KG07)+1 种基金the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-229)the National Basic Research Program of China (973 Program) (No. 2009CB219505)
文摘Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulation of the acoustic wave equation to marine seismic modeling using the staggered-grid finite-difference method. The scheme is developed using a fourth-order spatial and a second-order temporal operator. Then, we define a stability coefficient (SC) and calculate its maximum value under the stability condition. Based on the dispersion relationship, we conduct a detailed dispersion analysis for submarine sediments in terms of the phase and group velocity over a range of angles, stability coefficients, and orders. We also compare the numerical solution with the exact solution for a P-wave line source in a homogeneous submarine model. Additionally, the numerical results determined by a Marmousi2 model with a rugged seafloor indicate that this method is sufficient for modeling complex submarine structures.
基金Projects(U1734207,51978585)supported by the National Natural Science Foundation of ChinaProject(2016 YFE 0205200)supported by the National Key Research and Development Program of China。
文摘Excessive vibrations inside buildings in the Lihu New Village caused by the Shenzhen Metro Line 2 underground railway were investigated by conducting analyses of the tunnel,the track irregularities,the stiffness of the fastening system,and the vibrations of the track system and the building at different speeds.A numerical simulation based on the dynamic coupling theory of the vehicle-track system was used to verify the experimental results.Suitable countermeasures were investigated.The results show that rail corrugation is the primary reason for the excessive vibration,and an increase in the stiffness of the vertical fastening system is the secondary reason.The solution was to eliminate the rail corrugation using rail grinding and decrease the vertical stiffness by changing the fastening system.The results of this study provide references for solving vibration problems caused by rail lines.
基金Supported by National Natural Science Foundation of China (No 40576080)National High Technology Research and Development Program of China ("863" Program, No 2007AA12Z182)
文摘Based on the COHERENS model (a coupled hydrodynamic ecological model for regional and shelf seas), a numerical hydrodynamic model of the Hangzhou Bay, influenced by tide, regional winds and freshwater from the Yangtze River and the Qiantangjiang River was established. The Lagrangian particle tracking was simulated to provide tracer trajectories. For convenience, the modeling area was divided into 8 subdomains and the modeling focused on March (dry season) and July (wet season). Numerical simulation and analysis indicate that the tracer trajectories originated in different subdomains are quite different. Most particles released in the mouth of the bay move outside the bay quickly and reach the farthest place at 122.5°E; while particles released in the inner part of the bay mostly remain in the same subdomain, with only minor migrations in two opposite directions along the shore. The tracer experiments also indicate that the northwest region of the bay is an area where pollutant can easily accumulate in both wet and dry seasons, and that the southeast region of the bay is another area for pollutant to accumulate in dry season because it is the main path for the contaminant.
基金Under the auspices of National Natural Science Foundation of China (No.31101073)National Basic Research Program of China (No.2010CB950903)+1 种基金Special Fund for Meteorological-scientific Research in the Public Interest (No.GYHY201106020)Key Projects in National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (No.2011BAD32B01)
文摘As dominant biomes,forests play an important and indispensable role in adjusting the global carbon balance under climate change.Therefore,there are scientific and political implications in investigating the carbon budget of forest ecosystems and its response to climate change.Here we synthesized the most recent research progresses on the carbon cycle in terrestrial ecosystems,and applied an individual-based forest ecosystem carbon budget model for China(FORCCHN) to simulate the dynamics of the carbon fluxes of forest ecosystems in the northeastern China.The FORCCHN model was further improved and applied through adding variables and modules of precipitation(rainfall and snowfall) interception by tree crown,understory plants and litter.The results showed that the optimized FORCCHN model had a good performance in simulating the carbon budget of forest ecosystems in the northeastern China.From 1981 to 2002,the forests played a positive role in absorbing carbon dioxide.However,the capability of forest carbon sequestration had been gradually declining during the the same period.As for the average spatial distri-bution of net carbon budget,a majority of the regions were carbon sinks.Several scattered areas in the Heilongjiang Province and the Liaoning Province were identified as carbon sources.The net carbon budget was apparently more sensitive to an increase of air temperature than change of precipitation.
基金supported by the National Natural Science Foundation of China (Grant No. 90815025)the Tsinghua University Research Funds (Grant No. 2010THZ02-1)the "Program for New Century Excellent Talents in University"
文摘In recent years, super high-rise buildings (>500 m) are developing very quickly and become an important frontier of civil engineering. The collapse resistance of super high-rise buildings subjected to extremely strong earthquake is a critical problem that must be intensively studied. This paper builds up a nonlinear finite element model of the tallest building in China, Shang- hai Tower (632 m), and proposes the modeling method and failure criteria for different structural elements. The dynamic char- acters of this building are then analyzed, and the possible failure modes and collapse processes due to earthquakes are pre- dicted, as well as the corresponding collapse mechanism. This work will be helpful in collapse prevention and the seismic design of super high-rise buildings.
基金Supported by the National Natural Science Foundation of China (No. 40874036,No. 90814009,No. 40774011)the National Science & Technology Major Project of China (No. 2008ZX05008-006-062)
文摘The crustal structure of Xiachayu-Gonghe geophysical profile in eastern Tibetan plateau is simulated with Bouguer anomaly corrected for sediments and lithosphere. The forward simulation shows that the thickness of upper crust in eastem Tibetan plateau is about 20 km, and the density is 2.78 × 10^3 kg/m^3. The bottom interface of middle crust changes from 30 km to 40 km, the density of middle crust is 2.89 × 10^3 kg/m^3. The materials with low density of 2.78 × 10^3 kg/m^3 exist in middle crust, and those with high density of 3.33 × 10^3 kg/m^3 exist at the bottom of middle crust between Wenquan and Tanggemu. The density is 3.10× 10^3 kg/m^3 in lower crust. The shallowest depth of Moho interface is about 56 km, and the deepest one is about 74 km, the undulation of interface is large, the deep Moho is located in Xiachayu, Chayu, Nujiang, and Wenquan. The crustal density of eastern Tibetan plateau is larger than that of central section; the low velocity layers are located in middle crust and bottom in eastern Tibetan plateau and at the bottom of the upper crust in the central plateau.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41590623 & 41172182)the Ministry of Land Resources Public Welfare Industry Special Scientific Research Projects (Grant No. 201311178-3)
文摘The homologues temperature of a crystalline material is defined as T/Tm, where T is temperature and Tm is the melting (solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystalline materials. The melting temperature of olivine system, (Mg,Fe)2SiO4, decreases with increasing iron content and water content, and increases with confining pressure. At high pressure, phase transition will lead to a sharp change in the melting curve of olivine. After calibrating previous melting experiments on fayalite (Fe2SiO4), the triple point of fayalite-Fe2SiO4 spinel-liquid is determined to be at 6.4 GPa and 1793 K. Using the generalized means, the solidus and liquidus of dry olivine are described as a function of iron content and pressure up to 6.4 GPa. The change of T/Tm of olivine with depth allows us to compare the strength of the up- per mantle with different thermal states and olivine composition. The transition from semi-brittle to ductile deformation in the upper mantle occurs at a depth where T/Tm of olivine equals 0.5. The lithospheric mantle beneath cratons shows much smaller T/Tm of olivine than orogens and extensional basins until the lithosphere-asthenosphere boundary where T/Tm 〉 0.66, suggesting a stronger lithosphere beneath cratons. In addition, T/Tm is used to analyze deformation experiments on olivine. The results indicate that the effect of water on fabric transitions in olivine is closely related with pressure. The hydrogen-weakening effect and its relationship with T/Tm of olivine need further investigation. Below 6.4 GPa (〈200 kin), T/TIn of olivine controls the transition of dislocation glide from [100] slip to [001] slip. Under the strain rate of 10-12-10-15 s-1 and low stress in the upper mantle, the [100](010) slip system (A-type fabric) becomes dominant when T/TIn〉 0.55-0.60. When T/Tm〈 0.55-0.60, [001] slip is easier and low T/Tm favors the operation of [001](100) slip system (C-type fabric). This is consistent with the widely observed A-type olivine fabric in naturally deformed peridotites, and the C-type olivine fabric in peridotites that experienced deep subduction in ultrahigh-pressure metamorphic terranes. However, the B-type fabric will develop under high stress and relatively low T/Tm. Therefore, the homologues temperature of olivine established a bridge to extrapolate deformation experi- ments to rheology of the upper mantle. Seismic anisotropy of the upper mantle beneath cratons should be simulated using a four-layer model with the relic A-type fabric in the upper lithospheric mantle, the B-type fabric in the middle layer, the newly formed A- or B-type fabric near the lithosphere-asthenosphere boundary, and the asthenosphere dominated by diffusion creep below the Lehmann discontinuity. Knowledge about transition mechanisms of olivine fabrics is critical for tracing the water distribution and mantle flow from seismic anisotropy.
基金The Safari Club International Foundation(SCIF)The Federal Government of Germany via Deutsche Gesellschaft für Internationale Zusammenarbeit Gmb H(3393)
文摘We investigated the effects of climate change on the distribution of the Asiatic ibex(Capra sibirica)in eastern Tajikistan.No existing climate change studies have been conducted on the habitat of a wild goat species in Asia.We conducted ecological niche modelling to compare potential present and future distributions of suitable environmental conditions for ibex.Projecting to 2070,18%(2689 km^2)of the current suitable areas would be lost,mostly located in the southeastern and northwestern regions of the study area.However,new suitable habitats could expand outside the current ibex range—about 30%(4595 km^2)expansion until 2070.We found that the elevation,terrain roughness,seasonal temperature,and precipitation of warmest quarter were the most important factors in the models and had strong correlations to ibex distribution.The losses in the southeastern portion overlapped most of the current locations of ibex in that region.These losses were observed in the much lower elevations of the study area(3500 m to 4000 m).When considering both loss and gain,the ibex could see a net expansion to new suitable habitats.About 30%(1379 km^2)of the average habitat gains for the Asiatic ibex in 2070 showed a shift to northern lower temperature habitats.Our results are beneficial in planning for the potential effects on biodiversity conservation in the eastern mountain region of Tajikistan under climate change scenarios.Special attention should be given to the ibex populations in the southeastern region,where habitats could become unsuitable for the species as a result of the climate-induced effects on the mountain ecosystem.