We studied the geochemical characteristics of the fluid inclusions in the Ordovician carbonates and the Oligocene Shahejie Formation sandstones from 15 wells in the Gangxi Fault Belt, Huanghua Depression. The fluid in...We studied the geochemical characteristics of the fluid inclusions in the Ordovician carbonates and the Oligocene Shahejie Formation sandstones from 15 wells in the Gangxi Fault Belt, Huanghua Depression. The fluid inclusions are all sec- ondary with gas/liquid ratio of 5%~10%. Base on Raman they are mainly composed of H2O, CO2 and CH4. The homogenization temperatures, combined with burial and geothermal history of the host rock, indicate that the fluid flows in the Shahejie Formation and the Ordovician carbonates were trapped in Neocene. Using a VG5400 mass spectrometer, the helium isotopic compositions were analyzed. Interpretation of results suggested a significant amount of mantle-derived helium mainly accumulating in the intersections of the NWW trending Xuzhuangzi and NE trending Gangxi faults. The maturity of hydrocarbon decreases from the intersection to the outside pointing out that the fluid related to the NWW trending Xuzhuangzi and NE trending Gangxi faults. These factors implied the fluid inclusions have a close relationship to the local tectonic setting. Gangxi Fault Belt experienced intensive Neo-tectonic activities in Cenozoic. Widespread faulted-depressions and strong volcanic eruptions manifested its tec- tonic status of extensional stress field. Mantle uplift caused the movement of magma that carried mantle-derived gases and deep heat flows, the deep-rooted tension faults provided the passages for the gases and heat flows to shallow crust levels.展开更多
China has achieved much during recent years in the area of lithospheric physics research and promoted the development of the geosciences (Teng, 2004). However, in the 21^st century, national needs and policy challen...China has achieved much during recent years in the area of lithospheric physics research and promoted the development of the geosciences (Teng, 2004). However, in the 21^st century, national needs and policy challenges the science of lithospheric physics. I suggest a general analysis, research, and development direction for lithospheric physics and point out clearly the content, core problems, and key scientific problems in this field. The realization of the earth and the discovery of the basic mechanisms of mountains, basins, minerals, and natural disasters depend basically on high-resolution observations of geophysics, the delineation of the fine structure of crust and mantle (2D and 3D) inside the lithosphere, substance and energy exchanges in the deep earth, the process of deep physical, mechanical, and chemical actions, and deep dynamical response. Therefore, geophysics should be the pioneer in the geosciences field in the first half of the 21^st century. I end with an analysis and discussion of some problems and difficulties in the research of lithospheric physics.展开更多
In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an expo...In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.展开更多
The present study gives a detailed analysis of HM (heavy metals) accumulation in mollusks Nodularia (Bivalvia, Unionidae) from the transboundary part of the Amur River (Russia-China). This river basin experience...The present study gives a detailed analysis of HM (heavy metals) accumulation in mollusks Nodularia (Bivalvia, Unionidae) from the transboundary part of the Amur River (Russia-China). This river basin experiences different levels of toxic pollution. Differences in the rate of HM bioaccumulation in mollusks are identified depending on their size, sex (male and female), content of HM in environment, and ratio of accumulating macro- and micro-components in tissue. Mollusks' response to the change of HM content in the environment is expressed in the different intensities of their accumulation in tissue. The possibility of estimating toxic danger for mollusk according to the index of HM bioaccumulation with consideration of frequency of pathologies is shown. These indexes permitted estimation of the ecotoxicological condition of the mollusks population in the parts of the Amur, upstream and downstream of the inflow of the Sungari River and before and after the accidental pollution, respectively. It is found out that mollusks are able for bioremediation when pollution of the aquatic environment decreases. Quantitative correlation of HM bioaccumulation index in mollusks to HM content in the environment makes it possible to forecast the population condition, and to substantiate the necessity of ecological control of anthropogenic load on the ecosystem.展开更多
River estuarine environment plays a key role in the cycling of biological and chemical parameters and a significant region for the transaction of freshwater and seawater. In the present study, a first attempt has been...River estuarine environment plays a key role in the cycling of biological and chemical parameters and a significant region for the transaction of freshwater and seawater. In the present study, a first attempt has been made towards the development of a coupled three-dimensional hydrodynamic circulation model with four compartment (nitrate, phytoplankton, zooplankton and detritus) biogeochemical model in the Hooghly estuary (21 °36′-22° 16′1 and 87°42'-88°15′E) to simulate the varying effect of plankton biomass with the heavy input of anthropogenic litter from industrial effluents of Haldia port which is effecting the chemical and biological processes that control the plankton dynamics in the estuary. In-situ observational data for physico-chemical and biological parameters are collected from Calcutta University during 2010 are assimilated using multiscale OA (objective analysis) for different seasons and incorporated in ROMS (Regional Ocean Modeling System) to develop a high resolution (0.5 km x 0.5 kin) biogeochemical model. Recent analysis on physico-chemical parameters of the estuary is done as it is one of the largest estuaries in India and is the habitat for vast biodiversity. Influence of high nitrate (above 34 μg/L) and phosphate (5.22 μg/L) is predominant whereas DO (dissolved oxygen) is low (4.07 mg/L) in the Haldi River mouth which is sliding the productivity (less than 1 mg/L) and also affects water quality.展开更多
For the last two decades the world has undergone a population explosion which has been accompanied by a speeding up of urbanization and land use for industrial and agricultural products. These involve a vast increase ...For the last two decades the world has undergone a population explosion which has been accompanied by a speeding up of urbanization and land use for industrial and agricultural products. These involve a vast increase in the discharge of pollutants into very different receiving water bodies, and have had adverse effects on the various components of the environment. For a long time, human has concerned a little of the natural environment. It is obvious that this variation in surface temperature of the earth increases the level of sea due to snowmelt. So climate change is manifested by many phenomena: floods, droughts, fires, tornadoes, cyclones, earthquakes, volcanic eruptions, diseases etc.. The statement today is dramatic. Entire regions were devastated and many rivers and lakes have become polluted around the world. Pollution has it nature which is hard to be absorbed. Where did the different pollutants come from? What are the risks to the aquatic environment? To prevent and combat the general decline of these ecosystems, it is important to distinguish and determine the effects of different sources of pollution and any changes that may suffer the physical environment. The climate depends primarily on changes in earth orbit parameters, which affect the solar radiation received by the earth surface. Therefore, human participates strongly to these changes, for example, pollution is the main reason to argue the greenhouse effect, an increase of anthropogenic carbon dioxide (CO2) into the atmosphere, which promotes global warming to the planet. These modifications are already applied in order to ensure durable development in water resources by controlling discharges into streams to preserve water resources for future generations and to ensure reconciliation between man-climate and environment.展开更多
With the development of hydropower in the karst area of Southwest China, a series of cascade canyon reservoirs have been formed through the construction of dams. Given that hydrodynamic conditions in canyon reservoirs...With the development of hydropower in the karst area of Southwest China, a series of cascade canyon reservoirs have been formed through the construction of dams. Given that hydrodynamic conditions in canyon reservoirs play a pivotal role in controlling the spatiotemporal distribution of physical and chemical properties of the stored water, hydrodynamic characteristics are of great importance in understanding biogeochemical cycles in those reservoirs. To further this understanding, a field campaign was conducted in the Wujiangdu Reservoir of Guizhou Province. It was found that from the reservoir inlet to the front of the dam, velocity(v) was negativelycorrelated and had a logarithmic relationship with distance along the ship track(s) under dry-season flow conditions[v =-0.104 ln(s) + 0.4756]. Analysis showed that dryseason flow velocity had no significant correlation with water temperature, p H, or dissolved oxygen(DO). However, when velocity decreased to 0.061 m/s, water depth increased abruptly. In addition, DO displayed a sudden drop and the trend in p H changed from increasing to decreasing, while water temperature showed an opposite trend, indicating the existence of a transition zone from the river to the reservoir.展开更多
The Inohana Lake is a branch lake of the Hamana Lake. The Inohana Lake is an estuary rather than a brackish lake, and has suffered environmental problems such as eutrophication and bottom hypoxic water. In this study,...The Inohana Lake is a branch lake of the Hamana Lake. The Inohana Lake is an estuary rather than a brackish lake, and has suffered environmental problems such as eutrophication and bottom hypoxic water. In this study, the coupled hydrodynamic and ecological models (eco-hydrodynamic model) were used to construct the strategy for preventing the bottom hypoxic water and improving or recovering the water quality in the lake. Using the model input obtained from the summertime data over 1998-2002, the summer-average flow field and oxygen concentration and budget of the standard run were calculated. Remedial measures used in this study are divided into two parts: the biogeochemical and physical changes in the present situation. For the remedial measures including the biogeochemical changes in the present situation, the simulations considering the reductions of the nutrient inputs from the river, main lake (land) and bottom sediment, and the sediment oxygen demand (SOD) were carried out. For the remedial measures including the physical changes, the 50 and 100 m extensions of the inlet width were considered in the model runs. These simulated results were compared in terms of changes in the dissolved oxygen (DO) concentration and oxygen budget in the bottom layer in the Inohana Lake. There was no significant change in the DO concentration and oxygen stock in the simulations for the reduction of the nutrient inputs from the land and bottom sediment, however increases in those in the simulations for the reduction of SOD. When SOD was reduced by 50%, the bottom DO concentration increased by approximately 2 mg/L and the oxygen stock in the bottom layer increased by 47% comparing the present situation (the standard run) of the lake. The simulation results for inlet width extension showed that the extension of width makes the DO concentration and oxygen stock lower. The remedial measures for the sediment control were proposed to prevent the bottom hypoxia and manage the water quality.展开更多
The Tibetan Plateau is a large-scale tectonic geomorphologic unit formed by the interactions of plates.It has been commonly believed that convective removal of the thickened Tibetan lithosphere,or lateral flow of the ...The Tibetan Plateau is a large-scale tectonic geomorphologic unit formed by the interactions of plates.It has been commonly believed that convective removal of the thickened Tibetan lithosphere,or lateral flow of the lower crust beneath the Tibetan plateau plays a crucial role in the formation of the large-scale tectonic geomorphologic features.Recent geological and geo-physical observations have provided important evidence in support of the lower crustal channel flow model.However,it re-mains unclear as how the geometry of lower crustal channel and the lateral variation of crustal rheology within the lower crust channel may have affected spatio-temporal evolution of the tectonic geomorphologic unit of the Tibetan Plateau.Here,we use numerical methods to explore the mechanical relations between the lower crustal channel flow and the tectonic geomorpho-logic formation around the eastern Tibetan plateau,by deriving a series of governing equations from fluid mechanics theory.From numerous tests,our results show that the viscosity of the channeled lower crust is about(1-5)×1018 to(1-4)×1020 Pa s(Pa.s) beneath the margin of the eastern Tibetan Plateau,and increases to about 1022 Pa s beneath the Sichuan Basin and the southern region of Yunnan Province.Numerical tests also indicate that if channel flows of the lower crust exist,the horizontal propagation and the vertical uplifting rate of the eastern Tibetan Plateau margin could be accelerated with the time.Thus,the present results could be useful to constrain the rheological structure of the crust beneath the eastern Tibetan plateau,and to understand the possible mechanics of rapid uplift of the eastern Tibetan Plateau margin,especially since its occurrence at 8Ma as revealed by numerous geological observations.展开更多
In this paper, the theory of the free wobble of the triaxial Earth is developed and new conclusions are drawn: the Euler period should be actually expressed by the first kind of complete elliptic integral; the trace o...In this paper, the theory of the free wobble of the triaxial Earth is developed and new conclusions are drawn: the Euler period should be actually expressed by the first kind of complete elliptic integral; the trace of the free polar motion is elliptic and the orientations of its semi-minor and major axes are approximately parallel to the Earth's principal axes A and B, respectively. In addition, the present theory shows that there is a mechanism of frequency-amplitude modulation in the Chandler wobble, which might be a candidate for explaining the correlation between the amplitude and period of the Chandler wobble.展开更多
Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality...Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality and watercourses due to the erosion of contaminated soils for absence of vegetative cover. High concentrations of toxic elements, organic contaminants, acidic soils, and harsh climatic conditions have made it difficult to re-establish vegetation and produce crops there. Recently, a significant body of work has focussed on the suitability and potentiality of biochar as a soil remediation tool that increases seed emergence, soil and crop productivity, above ground biomass, and vegetation cover on mine tailings, waste rock piles, and industrial and sewage waste- contaminated soils by increasing soil nutrients and water-holding capacity, amelioration of soil acidity, and stimulation of microbial diversity and functions. This review addresses: i) the functional properties of biochar, and microbial cycling of nutrients in soil; ii) bioremediation, especially phytoremediation of mine railings, industrial waste, sewage sludge, and contaminated soil using biochar; iii) impact of biochar on reduction of acid production, acid mine drainage treatment, and geochemical dynamics in mine railings; and iv) treatment of metal and organic contaminants in soils using biochar, and restoration of degraded land.展开更多
Water(or H) in the silicate mantle is a key element in influencing Earth's climate, habitability, geochemical evolution, geophysical properties and geodynamical processes, and has received increasing attention in ...Water(or H) in the silicate mantle is a key element in influencing Earth's climate, habitability, geochemical evolution, geophysical properties and geodynamical processes, and has received increasing attention in the past decades. Experimental work under simulated high-pressure and high-temperature conditions is a powerful tool in characterizing the species, distribution, storage capacity and various physicochemical impacts of water in the mantle. In recent years, significant approaches have been acquired about some key physical, chemical and dynamical properties of water in the mantle and their various impacts, as a result of extensive studies by high-pressure and temperature experiments, and our knowledge of Earth's water cycle, especially the deep water cycle, on both temporal and spatial scales has been greatly enhanced. In this paper, a brief review based mainly on experimental studies is presented concerning the current understanding and some recent approaches of water in the silicate mantle, such as the possible origin, amount, storage and the effect on mantle properties.展开更多
Two models based on the hydrostatic primitive equations are proposed.The first model is the primitive equations with partial viscosity only,and is oriented towards large-scale wave structures in the ocean and atmosphe...Two models based on the hydrostatic primitive equations are proposed.The first model is the primitive equations with partial viscosity only,and is oriented towards large-scale wave structures in the ocean and atmosphere.The second model is the viscous primitive equations with spectral eddy viscosity,and is oriented towards turbulent geophysical flows.For both models,the existence and uniqueness of global strong solutions are established.For the second model,the convergence of the solutions to the solutions of the classical primitive equations as eddy viscosity parameters tend to zero is also established.展开更多
With unique physical and chemical properties, aqueous solutions in the mantle may play important roles for a number of geochemical and geodynamical processes. However, since experimental data available are very limite...With unique physical and chemical properties, aqueous solutions in the mantle may play important roles for a number of geochemical and geodynamical processes. However, since experimental data available are very limited, people still know little about the aqueous solutions and their interactions with surrounding rocks and melts. From the perspective of thermodynamics, equation of state(EOS) is the key to push forward the modeling of aqueous solutions. Nevertheless, up to now accurate EOSs suitable for the mantle conditions are still in shortage. With discussions over several recognized EOSs, we summarize several ways to enhance the predictability of EOS: utilizing high quality data from molecular simulations, choosing functions with sound physical background, and improving the regression procedures for the empirical parameters. In the meantime, we find that the ion-bearing systems are still the focus of challenges in this area. New developments of experiments and computer simulations effectively deal with these challenges and in-depth understandings of aqueous solutions in the mantle are expected in the near future.展开更多
The Cambrian explosion has long been a basic research frontier that concerns many scientific fields. Here we discuss the cause-effect links of the Cambrian explosion on the basis of first appearances of animal phyla i...The Cambrian explosion has long been a basic research frontier that concerns many scientific fields. Here we discuss the cause-effect links of the Cambrian explosion on the basis of first appearances of animal phyla in the fossil record, divergence time, environmental changes, Gene Regulatory Networks, and ecological feedbacks. The first appearances of phyla in the fos- sil record are obviously diachronous but relatively abrupt, concentrated in the first three stages of the Cambrian period (541- 514 Ma). The actual divergence time may be deep or shallow. Since the gene regulatory networks (GRNs) that control the de- velopment of metazoans were in place before the divergence, the establishment of GRNs is necessary but insufficient for the Cambrian explosion. Thus the Cambrian explosion required environmental triggers. Nutrient availability, oxygenation, and change of seawater composition were potential environmental triggers. The nutrient input, e.g., the phosphorus enrichment in the environment, would cause excess primary production, but it is not directly linked with diversity or disparity. Further in- crease of oxygen level and change of seawater composition during the Ediacaran-Cambrian transition were probably crucial environmental factors that caused the Cambrian explosion, but more detailed geochemical data are required. Many researchers prefer that the Cambrian explosion is an ecological phenomenon, that is, the unprecedented ecological success of ruetazoans during the Early Cambrian, but ecological effects need diverse and abundant animals. Therefore, the establishment of the eco- logical complexity among animals, and between animals and environments, is a consequence rather than a cause of the Cam- brian explosion. It is no doubt that positive ecological feedbacks could facilitate the increase of biodiversity. In a word, the Cambrian explosion happened when environmental changes crossed critical thresholds, led to the initial formation of the meta- zoan-doruinated ecosystem through a series of knock-on ecological processes, i.e., "ecological snowball" effects.展开更多
In situ observations and numerical simulations of turbulence are essential to understanding vertical mixing processes and their dynamical controls on both physical and biogeochemical processes in coastal embayments. U...In situ observations and numerical simulations of turbulence are essential to understanding vertical mixing processes and their dynamical controls on both physical and biogeochemical processes in coastal embayments. Using in situ data collected by bottom-mounted acoustic Doppler current profilers(ADCPs) and a free-falling microstructure profiler, as well as numerical simulations with a second-moment turbulence closure model, we studied turbulence and mixing in the Xiamen Bay, a freshwater-influenced tidal bay located at the west coast of the Taiwan Strait. Dynamically, the bay is driven predominantly by the M2 tide, and it is under a significant influence of the freshwater discharged from the Jiulong River. It is found that turbulence quantities such as the production and dissipation rates of the turbulent kinetic energy(TKE) were all subject to significant tidal variations, with a pronounced ebb-flood asymmetry. Turbulence was stronger during flood than ebb. During the flooding period, the whole water column was nearly well mixed with the depth-averaged TKE production rate and vertical eddy viscosity being up to 5?10?6 W kg?1 and 2?10?2 m2 s?1, respectively. In contrast, during the ebb strong turbulence was confined only to a 5?8 m thick bottom boundary layer, where turbulence intensity generally decreases with distance from the seafloor. Diagnosis of the potential energy anomaly showed that the ebb-flood asymmetry in turbulent dissipation and mixing was due mainly to tidal straining process as a result of the interaction between vertically shared tidal currents and horizontal density gradients. The role of vertical mixing in generating the asymmetry was secondary. A direct comparison of the modeled and observed turbulence quantities confirmed the applicability of the second-moment turbulence closure scheme in modeling turbulent processes in this weakly stratified tidally energetic environment, but also pointed out the necessity of further refinements of the model.展开更多
基金Project supported by the Key Laboratory of Marginal Sea Geology,South China Sea Institute of Oceanology, Chinese Academy of Sci-ences (No. MSGL0609)the Chinese Academy of Sciences (No.KZCX2-209)
文摘We studied the geochemical characteristics of the fluid inclusions in the Ordovician carbonates and the Oligocene Shahejie Formation sandstones from 15 wells in the Gangxi Fault Belt, Huanghua Depression. The fluid inclusions are all sec- ondary with gas/liquid ratio of 5%~10%. Base on Raman they are mainly composed of H2O, CO2 and CH4. The homogenization temperatures, combined with burial and geothermal history of the host rock, indicate that the fluid flows in the Shahejie Formation and the Ordovician carbonates were trapped in Neocene. Using a VG5400 mass spectrometer, the helium isotopic compositions were analyzed. Interpretation of results suggested a significant amount of mantle-derived helium mainly accumulating in the intersections of the NWW trending Xuzhuangzi and NE trending Gangxi faults. The maturity of hydrocarbon decreases from the intersection to the outside pointing out that the fluid related to the NWW trending Xuzhuangzi and NE trending Gangxi faults. These factors implied the fluid inclusions have a close relationship to the local tectonic setting. Gangxi Fault Belt experienced intensive Neo-tectonic activities in Cenozoic. Widespread faulted-depressions and strong volcanic eruptions manifested its tec- tonic status of extensional stress field. Mantle uplift caused the movement of magma that carried mantle-derived gases and deep heat flows, the deep-rooted tension faults provided the passages for the gases and heat flows to shallow crust levels.
基金Project supported by Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering (Grant No. KZCX3-SW-148) and by the National Natural Science Foundation of China (Grant No. 4043009).
文摘China has achieved much during recent years in the area of lithospheric physics research and promoted the development of the geosciences (Teng, 2004). However, in the 21^st century, national needs and policy challenges the science of lithospheric physics. I suggest a general analysis, research, and development direction for lithospheric physics and point out clearly the content, core problems, and key scientific problems in this field. The realization of the earth and the discovery of the basic mechanisms of mountains, basins, minerals, and natural disasters depend basically on high-resolution observations of geophysics, the delineation of the fine structure of crust and mantle (2D and 3D) inside the lithosphere, substance and energy exchanges in the deep earth, the process of deep physical, mechanical, and chemical actions, and deep dynamical response. Therefore, geophysics should be the pioneer in the geosciences field in the first half of the 21^st century. I end with an analysis and discussion of some problems and difficulties in the research of lithospheric physics.
基金supported by the Key Project of National Natural Science Foundation of China under Grant No.40730842the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No.KZCX2-YW-201the Postdoctoral Special Fund for the Innovation Program of the Shandong Province
文摘In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.
文摘The present study gives a detailed analysis of HM (heavy metals) accumulation in mollusks Nodularia (Bivalvia, Unionidae) from the transboundary part of the Amur River (Russia-China). This river basin experiences different levels of toxic pollution. Differences in the rate of HM bioaccumulation in mollusks are identified depending on their size, sex (male and female), content of HM in environment, and ratio of accumulating macro- and micro-components in tissue. Mollusks' response to the change of HM content in the environment is expressed in the different intensities of their accumulation in tissue. The possibility of estimating toxic danger for mollusk according to the index of HM bioaccumulation with consideration of frequency of pathologies is shown. These indexes permitted estimation of the ecotoxicological condition of the mollusks population in the parts of the Amur, upstream and downstream of the inflow of the Sungari River and before and after the accidental pollution, respectively. It is found out that mollusks are able for bioremediation when pollution of the aquatic environment decreases. Quantitative correlation of HM bioaccumulation index in mollusks to HM content in the environment makes it possible to forecast the population condition, and to substantiate the necessity of ecological control of anthropogenic load on the ecosystem.
文摘River estuarine environment plays a key role in the cycling of biological and chemical parameters and a significant region for the transaction of freshwater and seawater. In the present study, a first attempt has been made towards the development of a coupled three-dimensional hydrodynamic circulation model with four compartment (nitrate, phytoplankton, zooplankton and detritus) biogeochemical model in the Hooghly estuary (21 °36′-22° 16′1 and 87°42'-88°15′E) to simulate the varying effect of plankton biomass with the heavy input of anthropogenic litter from industrial effluents of Haldia port which is effecting the chemical and biological processes that control the plankton dynamics in the estuary. In-situ observational data for physico-chemical and biological parameters are collected from Calcutta University during 2010 are assimilated using multiscale OA (objective analysis) for different seasons and incorporated in ROMS (Regional Ocean Modeling System) to develop a high resolution (0.5 km x 0.5 kin) biogeochemical model. Recent analysis on physico-chemical parameters of the estuary is done as it is one of the largest estuaries in India and is the habitat for vast biodiversity. Influence of high nitrate (above 34 μg/L) and phosphate (5.22 μg/L) is predominant whereas DO (dissolved oxygen) is low (4.07 mg/L) in the Haldi River mouth which is sliding the productivity (less than 1 mg/L) and also affects water quality.
文摘For the last two decades the world has undergone a population explosion which has been accompanied by a speeding up of urbanization and land use for industrial and agricultural products. These involve a vast increase in the discharge of pollutants into very different receiving water bodies, and have had adverse effects on the various components of the environment. For a long time, human has concerned a little of the natural environment. It is obvious that this variation in surface temperature of the earth increases the level of sea due to snowmelt. So climate change is manifested by many phenomena: floods, droughts, fires, tornadoes, cyclones, earthquakes, volcanic eruptions, diseases etc.. The statement today is dramatic. Entire regions were devastated and many rivers and lakes have become polluted around the world. Pollution has it nature which is hard to be absorbed. Where did the different pollutants come from? What are the risks to the aquatic environment? To prevent and combat the general decline of these ecosystems, it is important to distinguish and determine the effects of different sources of pollution and any changes that may suffer the physical environment. The climate depends primarily on changes in earth orbit parameters, which affect the solar radiation received by the earth surface. Therefore, human participates strongly to these changes, for example, pollution is the main reason to argue the greenhouse effect, an increase of anthropogenic carbon dioxide (CO2) into the atmosphere, which promotes global warming to the planet. These modifications are already applied in order to ensure durable development in water resources by controlling discharges into streams to preserve water resources for future generations and to ensure reconciliation between man-climate and environment.
基金financially supported by the National Key Research and Development Programme of China(2016YFA0601001)the National Natural Science Foundation of China(Grant Nos.U1612441 and 41473082)CAS"Light of West China"Program
文摘With the development of hydropower in the karst area of Southwest China, a series of cascade canyon reservoirs have been formed through the construction of dams. Given that hydrodynamic conditions in canyon reservoirs play a pivotal role in controlling the spatiotemporal distribution of physical and chemical properties of the stored water, hydrodynamic characteristics are of great importance in understanding biogeochemical cycles in those reservoirs. To further this understanding, a field campaign was conducted in the Wujiangdu Reservoir of Guizhou Province. It was found that from the reservoir inlet to the front of the dam, velocity(v) was negativelycorrelated and had a logarithmic relationship with distance along the ship track(s) under dry-season flow conditions[v =-0.104 ln(s) + 0.4756]. Analysis showed that dryseason flow velocity had no significant correlation with water temperature, p H, or dissolved oxygen(DO). However, when velocity decreased to 0.061 m/s, water depth increased abruptly. In addition, DO displayed a sudden drop and the trend in p H changed from increasing to decreasing, while water temperature showed an opposite trend, indicating the existence of a transition zone from the river to the reservoir.
文摘The Inohana Lake is a branch lake of the Hamana Lake. The Inohana Lake is an estuary rather than a brackish lake, and has suffered environmental problems such as eutrophication and bottom hypoxic water. In this study, the coupled hydrodynamic and ecological models (eco-hydrodynamic model) were used to construct the strategy for preventing the bottom hypoxic water and improving or recovering the water quality in the lake. Using the model input obtained from the summertime data over 1998-2002, the summer-average flow field and oxygen concentration and budget of the standard run were calculated. Remedial measures used in this study are divided into two parts: the biogeochemical and physical changes in the present situation. For the remedial measures including the biogeochemical changes in the present situation, the simulations considering the reductions of the nutrient inputs from the river, main lake (land) and bottom sediment, and the sediment oxygen demand (SOD) were carried out. For the remedial measures including the physical changes, the 50 and 100 m extensions of the inlet width were considered in the model runs. These simulated results were compared in terms of changes in the dissolved oxygen (DO) concentration and oxygen budget in the bottom layer in the Inohana Lake. There was no significant change in the DO concentration and oxygen stock in the simulations for the reduction of the nutrient inputs from the land and bottom sediment, however increases in those in the simulations for the reduction of SOD. When SOD was reduced by 50%, the bottom DO concentration increased by approximately 2 mg/L and the oxygen stock in the bottom layer increased by 47% comparing the present situation (the standard run) of the lake. The simulation results for inlet width extension showed that the extension of width makes the DO concentration and oxygen stock lower. The remedial measures for the sediment control were proposed to prevent the bottom hypoxia and manage the water quality.
基金This work was supported by Knowledge Innovation Program of the Chi-nese Academy of Sciences (Grant No.KZCX2-YW-134)National Nat-ural Science Foundation of China (Grant No.41030320)
文摘The Tibetan Plateau is a large-scale tectonic geomorphologic unit formed by the interactions of plates.It has been commonly believed that convective removal of the thickened Tibetan lithosphere,or lateral flow of the lower crust beneath the Tibetan plateau plays a crucial role in the formation of the large-scale tectonic geomorphologic features.Recent geological and geo-physical observations have provided important evidence in support of the lower crustal channel flow model.However,it re-mains unclear as how the geometry of lower crustal channel and the lateral variation of crustal rheology within the lower crust channel may have affected spatio-temporal evolution of the tectonic geomorphologic unit of the Tibetan Plateau.Here,we use numerical methods to explore the mechanical relations between the lower crustal channel flow and the tectonic geomorpho-logic formation around the eastern Tibetan plateau,by deriving a series of governing equations from fluid mechanics theory.From numerous tests,our results show that the viscosity of the channeled lower crust is about(1-5)×1018 to(1-4)×1020 Pa s(Pa.s) beneath the margin of the eastern Tibetan Plateau,and increases to about 1022 Pa s beneath the Sichuan Basin and the southern region of Yunnan Province.Numerical tests also indicate that if channel flows of the lower crust exist,the horizontal propagation and the vertical uplifting rate of the eastern Tibetan Plateau margin could be accelerated with the time.Thus,the present results could be useful to constrain the rheological structure of the crust beneath the eastern Tibetan plateau,and to understand the possible mechanics of rapid uplift of the eastern Tibetan Plateau margin,especially since its occurrence at 8Ma as revealed by numerous geological observations.
基金Supported by the Special Project Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (China)the Engagement Fund of Outstanding Doctoral Dissertation of Wuhan University (No.22)+1 种基金the Ph.D. Candidates Self-research (including 1+4) Program of Wu-han Unversity in 2008 (No.49)the Open Fund of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education,China (No.08-02-02)
文摘In this paper, the theory of the free wobble of the triaxial Earth is developed and new conclusions are drawn: the Euler period should be actually expressed by the first kind of complete elliptic integral; the trace of the free polar motion is elliptic and the orientations of its semi-minor and major axes are approximately parallel to the Earth's principal axes A and B, respectively. In addition, the present theory shows that there is a mechanism of frequency-amplitude modulation in the Chandler wobble, which might be a candidate for explaining the correlation between the amplitude and period of the Chandler wobble.
文摘Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality and watercourses due to the erosion of contaminated soils for absence of vegetative cover. High concentrations of toxic elements, organic contaminants, acidic soils, and harsh climatic conditions have made it difficult to re-establish vegetation and produce crops there. Recently, a significant body of work has focussed on the suitability and potentiality of biochar as a soil remediation tool that increases seed emergence, soil and crop productivity, above ground biomass, and vegetation cover on mine tailings, waste rock piles, and industrial and sewage waste- contaminated soils by increasing soil nutrients and water-holding capacity, amelioration of soil acidity, and stimulation of microbial diversity and functions. This review addresses: i) the functional properties of biochar, and microbial cycling of nutrients in soil; ii) bioremediation, especially phytoremediation of mine railings, industrial waste, sewage sludge, and contaminated soil using biochar; iii) impact of biochar on reduction of acid production, acid mine drainage treatment, and geochemical dynamics in mine railings; and iv) treatment of metal and organic contaminants in soils using biochar, and restoration of degraded land.
基金supported by the National Basic Research Program of China(Grant Nos.2014CB845904 and 41590622)the National Natural Science Foundation of China(Grant No.41372041)+1 种基金the Recruitment Program of Global Young Experts(China)the Fundamental Research Funds for the Central Universities(China)
文摘Water(or H) in the silicate mantle is a key element in influencing Earth's climate, habitability, geochemical evolution, geophysical properties and geodynamical processes, and has received increasing attention in the past decades. Experimental work under simulated high-pressure and high-temperature conditions is a powerful tool in characterizing the species, distribution, storage capacity and various physicochemical impacts of water in the mantle. In recent years, significant approaches have been acquired about some key physical, chemical and dynamical properties of water in the mantle and their various impacts, as a result of extensive studies by high-pressure and temperature experiments, and our knowledge of Earth's water cycle, especially the deep water cycle, on both temporal and spatial scales has been greatly enhanced. In this paper, a brief review based mainly on experimental studies is presented concerning the current understanding and some recent approaches of water in the silicate mantle, such as the possible origin, amount, storage and the effect on mantle properties.
基金supported by the US Department of Energy grant (No. DE-SC0002624) as part of the "Climate Modeling:Simulating Climate at Regional Scale" programsupported by the National Science Foundation(No. DMS0606671,DMS1008852)
文摘Two models based on the hydrostatic primitive equations are proposed.The first model is the primitive equations with partial viscosity only,and is oriented towards large-scale wave structures in the ocean and atmosphere.The second model is the viscous primitive equations with spectral eddy viscosity,and is oriented towards turbulent geophysical flows.For both models,the existence and uniqueness of global strong solutions are established.For the second model,the convergence of the solutions to the solutions of the classical primitive equations as eddy viscosity parameters tend to zero is also established.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41590620 & 41473060)
文摘With unique physical and chemical properties, aqueous solutions in the mantle may play important roles for a number of geochemical and geodynamical processes. However, since experimental data available are very limited, people still know little about the aqueous solutions and their interactions with surrounding rocks and melts. From the perspective of thermodynamics, equation of state(EOS) is the key to push forward the modeling of aqueous solutions. Nevertheless, up to now accurate EOSs suitable for the mantle conditions are still in shortage. With discussions over several recognized EOSs, we summarize several ways to enhance the predictability of EOS: utilizing high quality data from molecular simulations, choosing functions with sound physical background, and improving the regression procedures for the empirical parameters. In the meantime, we find that the ion-bearing systems are still the focus of challenges in this area. New developments of experiments and computer simulations effectively deal with these challenges and in-depth understandings of aqueous solutions in the mantle are expected in the near future.
基金supported by National Basic Research Program of China (Grant No. 2013CB835000)National Natural Science Foundation of China (Grant Nos. 40925005, 41272036)+1 种基金the "111 Project" (Grant No. P201102007)the key project from the State Key Laboratory of Continental Dynamics, Northwest University
文摘The Cambrian explosion has long been a basic research frontier that concerns many scientific fields. Here we discuss the cause-effect links of the Cambrian explosion on the basis of first appearances of animal phyla in the fossil record, divergence time, environmental changes, Gene Regulatory Networks, and ecological feedbacks. The first appearances of phyla in the fos- sil record are obviously diachronous but relatively abrupt, concentrated in the first three stages of the Cambrian period (541- 514 Ma). The actual divergence time may be deep or shallow. Since the gene regulatory networks (GRNs) that control the de- velopment of metazoans were in place before the divergence, the establishment of GRNs is necessary but insufficient for the Cambrian explosion. Thus the Cambrian explosion required environmental triggers. Nutrient availability, oxygenation, and change of seawater composition were potential environmental triggers. The nutrient input, e.g., the phosphorus enrichment in the environment, would cause excess primary production, but it is not directly linked with diversity or disparity. Further in- crease of oxygen level and change of seawater composition during the Ediacaran-Cambrian transition were probably crucial environmental factors that caused the Cambrian explosion, but more detailed geochemical data are required. Many researchers prefer that the Cambrian explosion is an ecological phenomenon, that is, the unprecedented ecological success of ruetazoans during the Early Cambrian, but ecological effects need diverse and abundant animals. Therefore, the establishment of the eco- logical complexity among animals, and between animals and environments, is a consequence rather than a cause of the Cam- brian explosion. It is no doubt that positive ecological feedbacks could facilitate the increase of biodiversity. In a word, the Cambrian explosion happened when environmental changes crossed critical thresholds, led to the initial formation of the meta- zoan-doruinated ecosystem through a series of knock-on ecological processes, i.e., "ecological snowball" effects.
基金supported by the National Natural Science Foundation of China(Grant Nos.41006017,41476006)the Natural Science Foundation of Fujian Province of China(Grant No.2015J06010)
文摘In situ observations and numerical simulations of turbulence are essential to understanding vertical mixing processes and their dynamical controls on both physical and biogeochemical processes in coastal embayments. Using in situ data collected by bottom-mounted acoustic Doppler current profilers(ADCPs) and a free-falling microstructure profiler, as well as numerical simulations with a second-moment turbulence closure model, we studied turbulence and mixing in the Xiamen Bay, a freshwater-influenced tidal bay located at the west coast of the Taiwan Strait. Dynamically, the bay is driven predominantly by the M2 tide, and it is under a significant influence of the freshwater discharged from the Jiulong River. It is found that turbulence quantities such as the production and dissipation rates of the turbulent kinetic energy(TKE) were all subject to significant tidal variations, with a pronounced ebb-flood asymmetry. Turbulence was stronger during flood than ebb. During the flooding period, the whole water column was nearly well mixed with the depth-averaged TKE production rate and vertical eddy viscosity being up to 5?10?6 W kg?1 and 2?10?2 m2 s?1, respectively. In contrast, during the ebb strong turbulence was confined only to a 5?8 m thick bottom boundary layer, where turbulence intensity generally decreases with distance from the seafloor. Diagnosis of the potential energy anomaly showed that the ebb-flood asymmetry in turbulent dissipation and mixing was due mainly to tidal straining process as a result of the interaction between vertically shared tidal currents and horizontal density gradients. The role of vertical mixing in generating the asymmetry was secondary. A direct comparison of the modeled and observed turbulence quantities confirmed the applicability of the second-moment turbulence closure scheme in modeling turbulent processes in this weakly stratified tidally energetic environment, but also pointed out the necessity of further refinements of the model.