As a useful approach for hydrocarbon exploration, the sequence stratigraphy has been commonly accepted. The concepts of sequence and parasequence provide a state-of-the-artframework for studying the distribution and c...As a useful approach for hydrocarbon exploration, the sequence stratigraphy has been commonly accepted. The concepts of sequence and parasequence provide a state-of-the-artframework for studying the distribution and characters of depositional system, and analyzing the occurrence, distribution, characteristics of source, reservoir and seal-play elements. The newly-developed geochemical-sequence stratigraphy focuses mainly on the occurrence, distribution and characters of source rocks and reservoir hydrocarbons within a chronostratigraphic framework. Integrated with sequence stratigraphy, geochemistry can be used to study the source rock potential within a sequence stratigraphic framework and to describe the characteristics of hydrocarbons accumulated in reservoirs, which were predicted by way of sequence stratigraphy. The concept of geochemical-sequence stratigraphy was proposed by Peters et al. (2000). Constructing a reliable sequence stratigraphic framework is the basis of geochemical-sequence stratigraphic study although it is not the main goal. High-resolution biomarker analysis is critical to the construction of a geochemical-sequence stratigraphic model. The geochemical-stratigraphic study involves mainly: (1) the distribution and geochemical characteristics of source rocks within a sequence chronostratigraphic framework; (2) the geochemical features of source rocks with relative sea (lake)-level change; (3) to predict if these reservoirs bear hydrocarbons and their geochemical features; (4) to be used to construct the time-stratigraphic framework. This paper also summarizes the lake basin types, and introduces their facies associations, source potential and organic geochemical features. At the end, the authors offer some suggestions about how to carry out geochemical-sequence stratigraphic study in lacustrine strata.展开更多
Based on element geochemical studies of the main Permian exploitable coal measure strata in Western Guizhou, the element geochemical distribution characteristics of the main exploitable coal measures were revealed in ...Based on element geochemical studies of the main Permian exploitable coal measure strata in Western Guizhou, the element geochemical distribution characteristics of the main exploitable coal measures were revealed in the regions of Dafang, Qianxi, Weining, Hezhang, Zhijin, etc., of Guizhou Province, and the results show that their element contents are mainly affected by terrestrial material supply. Coal measures formed in the delta plain environment where sufficient terrestrial materials are supplied contain relatively abundant trace elements and rare-earth elements, whereas those formed in the tidal-fiat environment influenced greatly by seawater have relatively low contents of trace elements and rare-earth elements, mainly con- trolled by the geological fact that basalts the parent rocks from source regions contain high trace elements and rare-earth elements. In addition, coal measures affected by later hydrothermal activities and fault tectonics contain a large amount of harmful elements. According to the rules of distribution of elements in coal measures, a new idea was put forward to classify coal-forming environments by using the geochemical composition characteristics, which is of great significance in dissolving the problem of whether coal measures were fbrmed either in delta environments or in tidal-flat environments in Western Gui- zhou. At the same time, the rules of distribution of elements in the main exploitable coal measures in Western Guizhou were fully understood, which is of direct significance in utilizing coal resources on the basis of classification of coals, as well as in developing the coal chemical industry.展开更多
文摘As a useful approach for hydrocarbon exploration, the sequence stratigraphy has been commonly accepted. The concepts of sequence and parasequence provide a state-of-the-artframework for studying the distribution and characters of depositional system, and analyzing the occurrence, distribution, characteristics of source, reservoir and seal-play elements. The newly-developed geochemical-sequence stratigraphy focuses mainly on the occurrence, distribution and characters of source rocks and reservoir hydrocarbons within a chronostratigraphic framework. Integrated with sequence stratigraphy, geochemistry can be used to study the source rock potential within a sequence stratigraphic framework and to describe the characteristics of hydrocarbons accumulated in reservoirs, which were predicted by way of sequence stratigraphy. The concept of geochemical-sequence stratigraphy was proposed by Peters et al. (2000). Constructing a reliable sequence stratigraphic framework is the basis of geochemical-sequence stratigraphic study although it is not the main goal. High-resolution biomarker analysis is critical to the construction of a geochemical-sequence stratigraphic model. The geochemical-stratigraphic study involves mainly: (1) the distribution and geochemical characteristics of source rocks within a sequence chronostratigraphic framework; (2) the geochemical features of source rocks with relative sea (lake)-level change; (3) to predict if these reservoirs bear hydrocarbons and their geochemical features; (4) to be used to construct the time-stratigraphic framework. This paper also summarizes the lake basin types, and introduces their facies associations, source potential and organic geochemical features. At the end, the authors offer some suggestions about how to carry out geochemical-sequence stratigraphic study in lacustrine strata.
文摘Based on element geochemical studies of the main Permian exploitable coal measure strata in Western Guizhou, the element geochemical distribution characteristics of the main exploitable coal measures were revealed in the regions of Dafang, Qianxi, Weining, Hezhang, Zhijin, etc., of Guizhou Province, and the results show that their element contents are mainly affected by terrestrial material supply. Coal measures formed in the delta plain environment where sufficient terrestrial materials are supplied contain relatively abundant trace elements and rare-earth elements, whereas those formed in the tidal-fiat environment influenced greatly by seawater have relatively low contents of trace elements and rare-earth elements, mainly con- trolled by the geological fact that basalts the parent rocks from source regions contain high trace elements and rare-earth elements. In addition, coal measures affected by later hydrothermal activities and fault tectonics contain a large amount of harmful elements. According to the rules of distribution of elements in coal measures, a new idea was put forward to classify coal-forming environments by using the geochemical composition characteristics, which is of great significance in dissolving the problem of whether coal measures were fbrmed either in delta environments or in tidal-flat environments in Western Gui- zhou. At the same time, the rules of distribution of elements in the main exploitable coal measures in Western Guizhou were fully understood, which is of direct significance in utilizing coal resources on the basis of classification of coals, as well as in developing the coal chemical industry.