期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
7~Be: A Geochemical Tracer for Seasonal Erosion of Surface Soil in Watershed of Lake Hongfeng, Guizhou, China 被引量:10
1
作者 BAI ZHANGUO WAN GUOJIANG +3 位作者 WANG CHANGSHENG WAN XI HUANGRONGGUI P.H. SANTSCHIZ and M. BASKARANZ(1 ̄State Key Lab. Of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences,Guiyang 550002 (China))(2 ̄Department Of Marine Scien 《Pedosphere》 SCIE CAS CSCD 1996年第1期23-28,共6页
e penetrative depth in undisturbed surface soil is within 4 mm.7 ̄Be activity shows exponential decrease with soil depth, which is expressed as a diffusion process.7 ̄Be penetrative depth in undisturbed surface soil i... e penetrative depth in undisturbed surface soil is within 4 mm.7 ̄Be activity shows exponential decrease with soil depth, which is expressed as a diffusion process.7 ̄Be penetrative depth in undisturbed surface soil is apparently deeper in the fall (0.22-0.37 g cm ̄(-2) than in the spring (0.11-0.28 g cm ̄(-2) at the same site; Whereas,  ̄7Be apparent activity at the top of surface soil is higher in the spring (0.3-2.2 Bq g ̄(-1_) than in the fall (0.2-0.5 Bq g ̄(-1) at the same site. The  ̄7Be inventory (189-544 Bq m ̄(-2) changes with both locations and seasons. Although the  ̄7Be flux to the earth's surface increases with amount of precipitation, its maximum inventory in the soil profiles decreases to 30%-40% after the rainy period. Calculated by the diffusion equation, the erosion and accumulation rates of soil particles are agreeable with the observation in situ., which shows that the rates in fall are 1.5 times those in spring. The eroded soil particles almost all have been removed on the tablelands rather than transported into the drainage system. This indicstes that the soil erosion process in the karst region is only partial transportation within a short distance. 展开更多
关键词 e erosion trace Lake Hongfeng watershed surface soil
下载PDF
Uptake and Recovery of Soil Nitrogen by Bryophytes and Vascular Plants in an Alpine Meadow 被引量:7
2
作者 WANG Jin-niu SHI Fu-sun +3 位作者 XU Bo WANG Qian WU Yan WU Ning 《Journal of Mountain Science》 SCIE CSCD 2014年第2期475-484,共10页
Due to their particular physiology and life history traits, bryophytes are critical in regulating biogeochemical cycles and functions in alpine ecosystem. Hence, it is crucial to investigate their nutrient utilization... Due to their particular physiology and life history traits, bryophytes are critical in regulating biogeochemical cycles and functions in alpine ecosystem. Hence, it is crucial to investigate their nutrient utilization strategies in comparison with vascular plants and understand their responses to the variation of growing season caused by climate change. Firstly, this study testified whether or not bryophytes can absorb nitrogen(N) directly from soil through spiking three chemical forms of 15N stable isotope tracer. Secondly, with stronger ability of carbohydrates assimilation and photosynthesis, it is supposed that N utilization efficiency of vascular plants is significantly higher than that of bryophytes. However, the recovery of soil N by bryophytes can still compete with vascular plants due to their greater phytomass. Thirdly, resource acquisition may be varied from the change of growing season, during which N pulse can be manipulated with 15N tracer addition at different time. Both of bryophytes and vascular plants contain more N in a longer growing season, and prefer inorganic over organic N. Bryophytes assimilate more NH4+ than NO3– and amino acid, which can be indicated from the greater shoot excess 15N of bryophytes. However, vascular plants prefer to absorb NO3– for their developed root systems and vascular tissue. Concerning the uptake of three forms N by bryophytes, there is significant difference between two manipulated lengths of growing season. Furthermore, the capacity of bryophytes to tolerate N-pollution may be lower than currently appreciated, which indicates the effect of climate change on asynchronous variation of soil N pools with plant requirements. 展开更多
关键词 Plant functional groups N pulse Alpine meadow N uptake N recovery
下载PDF
Radionuclides and mercury in the salt lakes of the Crimea
3
作者 Natalya MIRZOYEVA Larisa GULINA +5 位作者 Sergey GULIN Olga PLOTITSINA Alexandra STETSUK Svetlana ARKHIPOVA Nina KORKISHKO Oleg EREMIN 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2015年第6期1413-1425,共13页
^99Sr concentrations, resulting from the Chernobyl NPP accident, were determined in the salt lakes of the Crimea (Lakes Kiyatskoe, Kirleutskoe, Kizil-Yar, Bakalskoe and Donuzlav), together with the redistribution be... ^99Sr concentrations, resulting from the Chernobyl NPP accident, were determined in the salt lakes of the Crimea (Lakes Kiyatskoe, Kirleutskoe, Kizil-Yar, Bakalskoe and Donuzlav), together with the redistribution between the components of the ecosystems. The content of mercury in the waters of the studied reservoirs was also established. Vertical distributions of natural radionuclide activities (^238U, ^232Th, ^226Ra, ^210pb, ^40K) and anthropogenic ^137Cs concentrations (as radiotracers) were determined in the bottom sediments of the Koyashskoe salt lake (located in the south-eastern Crimea) to evaluate the long- term dynamics and biogeochemical processes. Radiochemical and chemical analysis was undertaken and radiotracer and statistical methods were applied to the analytical data. The highest concentrations of ^99Sr in the water of Lake Kiyatskoe (350.5 and 98.0 Bq/m^3) and Lake Kirleutskoe (121.3 Bq/m^3) were due to the discharge of the Dnieper water from the North-Crimean Canal. The high content of mercury in Lake Kiyatskoe (363.2 ng/L) and in seawater near Lake Kizil-Yar (364 ng/L) exceeded the maximum permissible concentration (3.5 times the maximum). Natural radionuclides provide the main contribution to the total radioactivity (artificial and natural combined) in the bottom sediments of Lake Koyashskoe. The significant concentration of ^210pb in the upper layer of bottom sediments of the lake indicates an active inflow of its parent radionuclide-gaseous ^222Rn from the lower layers of the bottom sediment. The average sedimentation rates in Lake Koyashskoe, determined using ^210pb and ^137Cs data, were 0.117 and 0.109 cm per year, respectively. 展开更多
关键词 CRIMEA salt lakes Black Sea Chernobyl NPP accident radionuclides MERCURY ecological impact
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部