Both academia and actual economic sectors have certain misunderstandings regarding the development of China's open economy. Since its accession to the WTO, China has in fact had an open economy and not an "export-or...Both academia and actual economic sectors have certain misunderstandings regarding the development of China's open economy. Since its accession to the WTO, China has in fact had an open economy and not an "export-oriented" economy. China's trade imbalance in the global economy is merely a result of economic disparities between the world's more- and less- developed regions combined with the rational optimization of resources. The current situation, wherein China appears to be heavily export-oriented, stems naturally from the real economy moving towards a dynamic equilibrium against a backdrop of economic globalization and deepening international specialization. We have concluded that domestic consumption and external demand reinforce each other, and the development of an open economy in China is therefore not at odds with expanding domestic consumption.展开更多
The occurrence of moissanite(SiC), as xenocrysts in mantle-derived basaltic and kimberlitic rocks sheds light on the interplay between carbon, hydrogen and oxygen in the lithospheric and sublithospheric mantle. SiC is...The occurrence of moissanite(SiC), as xenocrysts in mantle-derived basaltic and kimberlitic rocks sheds light on the interplay between carbon, hydrogen and oxygen in the lithospheric and sublithospheric mantle. SiC is stable only at fO2< △IW-6, while the lithospheric mantle and related melts commonly are considered to be much more oxidized. SiC grains from both basaltic volcanoclastic rocks and kimberlites contain metallic inclusions whose shapes suggest they were entrapped as melts. The inclusions consist of Si^0+ Fe3Si7± FeSi2 Ti ± CaSi2Al2± FeSi2Al3± CaSi2, and some of the phases show euhedral shapes toward Si^0. Crystallographically-oriented cavities are common in SiC, suggesting the former presence of volatile phase(s), and the volatiles extracted from crushed SiC grains contain H2+ CH4± CO2± CO.Our observations suggest that SiC crystalized from metallic melts(Si-Fe-Ti-C ± Al ± Ca), with dissolved H2+ CH4± CO2± CO derived from the sublithospheric mantle and concentrated around interfaces such as the lithosphere-asthenosphere and crust-mantle boundaries. When mafic/ultramafic magmas are continuously fluxed with H2+ CH4 they can be progressively reduced, to a point where silicide melts become immiscible, and crystallize phases such as SiC. The occurrence of SiC in explosive volcanic rocks from different tectonic settings indicates that the delivery of H2+ CH4 from depth may commonly accompany explosive volcanism and modify the redox condition of some lithospheric mantle volumes. The heterogeneity of redox states further influences geochemical reactions such as melting and geophysical properties such as seismic velocity and the viscosity of mantle rocks.展开更多
文摘Both academia and actual economic sectors have certain misunderstandings regarding the development of China's open economy. Since its accession to the WTO, China has in fact had an open economy and not an "export-oriented" economy. China's trade imbalance in the global economy is merely a result of economic disparities between the world's more- and less- developed regions combined with the rational optimization of resources. The current situation, wherein China appears to be heavily export-oriented, stems naturally from the real economy moving towards a dynamic equilibrium against a backdrop of economic globalization and deepening international specialization. We have concluded that domestic consumption and external demand reinforce each other, and the development of an open economy in China is therefore not at odds with expanding domestic consumption.
基金supported by grants from the ARC Centre of Excellence for Core to Crust Fluid Systems。
文摘The occurrence of moissanite(SiC), as xenocrysts in mantle-derived basaltic and kimberlitic rocks sheds light on the interplay between carbon, hydrogen and oxygen in the lithospheric and sublithospheric mantle. SiC is stable only at fO2< △IW-6, while the lithospheric mantle and related melts commonly are considered to be much more oxidized. SiC grains from both basaltic volcanoclastic rocks and kimberlites contain metallic inclusions whose shapes suggest they were entrapped as melts. The inclusions consist of Si^0+ Fe3Si7± FeSi2 Ti ± CaSi2Al2± FeSi2Al3± CaSi2, and some of the phases show euhedral shapes toward Si^0. Crystallographically-oriented cavities are common in SiC, suggesting the former presence of volatile phase(s), and the volatiles extracted from crushed SiC grains contain H2+ CH4± CO2± CO.Our observations suggest that SiC crystalized from metallic melts(Si-Fe-Ti-C ± Al ± Ca), with dissolved H2+ CH4± CO2± CO derived from the sublithospheric mantle and concentrated around interfaces such as the lithosphere-asthenosphere and crust-mantle boundaries. When mafic/ultramafic magmas are continuously fluxed with H2+ CH4 they can be progressively reduced, to a point where silicide melts become immiscible, and crystallize phases such as SiC. The occurrence of SiC in explosive volcanic rocks from different tectonic settings indicates that the delivery of H2+ CH4 from depth may commonly accompany explosive volcanism and modify the redox condition of some lithospheric mantle volumes. The heterogeneity of redox states further influences geochemical reactions such as melting and geophysical properties such as seismic velocity and the viscosity of mantle rocks.