知识图谱作为当前最有效的知识组织和服务方式,已经成为人工智能的基石,在语义搜索、机器翻译、信息推荐等方面得到了广泛的应用。大数据时代下,地球科学(以下简称地学)分散、多源、异构数据的整合集成、挖掘分析及其知识的智能发现等...知识图谱作为当前最有效的知识组织和服务方式,已经成为人工智能的基石,在语义搜索、机器翻译、信息推荐等方面得到了广泛的应用。大数据时代下,地球科学(以下简称地学)分散、多源、异构数据的整合集成、挖掘分析及其知识的智能发现等迫切需要知识图谱的支撑。为了促进地学知识图谱的建设与应用,自2019年启动以来,“深时数字地球国际大科学计划”(Deep-time Digital Earth,简称DDE)就将知识图谱作为其重要的研究建设内容,经过3年多的建设,DDE已经建设形成了大量的地学知识图谱,亟需一站式共享这些知识图谱。文章首先介绍了DDE知识图谱内容体系,分析了DDE知识图谱内容组成及其特征;在此基础上,开展了地学知识图谱一站式共享服务系统的设计,包括系统功能体系和架构的设计;最后介绍了系统实现的技术路线及其关键技术。实践证明系统可有效实现DDE知识图谱的一站式共享服务,可为类似的知识共享服务系统提供参考。展开更多
文摘知识图谱作为当前最有效的知识组织和服务方式,已经成为人工智能的基石,在语义搜索、机器翻译、信息推荐等方面得到了广泛的应用。大数据时代下,地球科学(以下简称地学)分散、多源、异构数据的整合集成、挖掘分析及其知识的智能发现等迫切需要知识图谱的支撑。为了促进地学知识图谱的建设与应用,自2019年启动以来,“深时数字地球国际大科学计划”(Deep-time Digital Earth,简称DDE)就将知识图谱作为其重要的研究建设内容,经过3年多的建设,DDE已经建设形成了大量的地学知识图谱,亟需一站式共享这些知识图谱。文章首先介绍了DDE知识图谱内容体系,分析了DDE知识图谱内容组成及其特征;在此基础上,开展了地学知识图谱一站式共享服务系统的设计,包括系统功能体系和架构的设计;最后介绍了系统实现的技术路线及其关键技术。实践证明系统可有效实现DDE知识图谱的一站式共享服务,可为类似的知识共享服务系统提供参考。