Assessment report of the Intergovernmental Panel on Climate Change (IPCC) highlighted the complex linkages between climate change and water. The likely warmer climate induced by the climate change is set to alter hy...Assessment report of the Intergovernmental Panel on Climate Change (IPCC) highlighted the complex linkages between climate change and water. The likely warmer climate induced by the climate change is set to alter hydrological cycle and the shifting pattern of the rainfall would affect the spatial and temporal distribution of runoff, soil moisture, and surface and groundwater reserves. Therefore, there is an urgent need to assess the impacts of climate change on water and devise adaptation measures including management structures and processes by which one can deal with this challenge. The paper highlights with the global overview of climate change impacts on water in the arid region, supported and substantiated through scientific evidence drawn from IPCC reports and other relevant documents. This paper provides an overview of water resource management challenges including transboundary geopolitical concerns documented across the world and emphasizes the importance of an integrated framework for adaptive policy making. Further, it examines the viable water resource management options for various sectors and regions and showcases some of the international best practices in adaptation and mitigation. The paper also explains the complementary role of traditional knowledge in coping with climate change risks and uncertainties and the need for a balanced view in designing adaptation and mitigation strategies.展开更多
The CME’s structure of solar wind(interplanetary magnetic field)is different from CIR’s.The two processes in which plasma and solar wind energy are injected into the Earth’s inner magnetosphere are not the same.So,...The CME’s structure of solar wind(interplanetary magnetic field)is different from CIR’s.The two processes in which plasma and solar wind energy are injected into the Earth’s inner magnetosphere are not the same.So,the variations of energetic elec- trons flux in the radiation belts are different between the storms associated with CMEs and CIRs.By using data from SAMPEX(Solar,Anomalous,and Magnetospheric Particle Explorer)satellite,we have investigated the dynamic variations of the outer radiation belt for 1.5–6.0 MeV electrons during 54 CME-driven storms and 26 CIR-driven recurrent storms.According to the superposed epoch analysis,for CME-and CIR-driven storms,when the Dst index reaches the minimum,the locations of the outer boundary move to L=4 and L=5.5,respectively.In the recovery phases,the locations of the outer boundary of the outer radiation belt are generally lower than and slightly higher than those before CME-and CIR-driven storms,respectively.We have found that the logarithmically decaying 1/e cut-off L-shell is a satisfying indicator of the outer boundary of the outer radiation belt.Furthermore,our study shows that the logarithmically decaying 1/e cut-off latitude is dependent on the Kp index in the main phases of CME-and CIR-driven storms,while in the recovery phases,there is no obvious correlation.In ad- dition,it has been shown that the locations of the peak electron flux are controlled by the minimum Dst index in the main phases of CME-driven storms.The influences of multiple storms on the electron flux of outer radiation belt have also been in- vestigated.展开更多
文摘Assessment report of the Intergovernmental Panel on Climate Change (IPCC) highlighted the complex linkages between climate change and water. The likely warmer climate induced by the climate change is set to alter hydrological cycle and the shifting pattern of the rainfall would affect the spatial and temporal distribution of runoff, soil moisture, and surface and groundwater reserves. Therefore, there is an urgent need to assess the impacts of climate change on water and devise adaptation measures including management structures and processes by which one can deal with this challenge. The paper highlights with the global overview of climate change impacts on water in the arid region, supported and substantiated through scientific evidence drawn from IPCC reports and other relevant documents. This paper provides an overview of water resource management challenges including transboundary geopolitical concerns documented across the world and emphasizes the importance of an integrated framework for adaptive policy making. Further, it examines the viable water resource management options for various sectors and regions and showcases some of the international best practices in adaptation and mitigation. The paper also explains the complementary role of traditional knowledge in coping with climate change risks and uncertainties and the need for a balanced view in designing adaptation and mitigation strategies.
基金supported by the National Natural Science Foundation of China(Grant Nos.40831061,41074117)the Specialized Research Fund for State Key Laboratories
文摘The CME’s structure of solar wind(interplanetary magnetic field)is different from CIR’s.The two processes in which plasma and solar wind energy are injected into the Earth’s inner magnetosphere are not the same.So,the variations of energetic elec- trons flux in the radiation belts are different between the storms associated with CMEs and CIRs.By using data from SAMPEX(Solar,Anomalous,and Magnetospheric Particle Explorer)satellite,we have investigated the dynamic variations of the outer radiation belt for 1.5–6.0 MeV electrons during 54 CME-driven storms and 26 CIR-driven recurrent storms.According to the superposed epoch analysis,for CME-and CIR-driven storms,when the Dst index reaches the minimum,the locations of the outer boundary move to L=4 and L=5.5,respectively.In the recovery phases,the locations of the outer boundary of the outer radiation belt are generally lower than and slightly higher than those before CME-and CIR-driven storms,respectively.We have found that the logarithmically decaying 1/e cut-off L-shell is a satisfying indicator of the outer boundary of the outer radiation belt.Furthermore,our study shows that the logarithmically decaying 1/e cut-off latitude is dependent on the Kp index in the main phases of CME-and CIR-driven storms,while in the recovery phases,there is no obvious correlation.In ad- dition,it has been shown that the locations of the peak electron flux are controlled by the minimum Dst index in the main phases of CME-driven storms.The influences of multiple storms on the electron flux of outer radiation belt have also been in- vestigated.