To control the growth of space debris in the geostationary earth orbit (GEO), a novel solution of net capture and tether-tugging reorbiting is proposed. After capture, the tug (i.e., active spacecraft), tether, ne...To control the growth of space debris in the geostationary earth orbit (GEO), a novel solution of net capture and tether-tugging reorbiting is proposed. After capture, the tug (i.e., active spacecraft), tether, net, and target (i.e., GEO debris) constitute a rig- id-flexible coupled tethered combination system (TCS), and subsequently the system is transported to the graveyard orbit by a thruster equipped on the tug. This paper attempts to study the dynamics of tether-tugging leorbiting after net capture. The net is equivalent to four flexible bridles, and the tug and target are viewed as rigid bodies. A sophisticated mathematical model is developed, taking into account the system orbital motion, relative motion of two spacecraft and spacecraft attitude motion. Given the complexity of the model, the numerical method is adopted to study the system dynamics characteristics. Particular attention is given to the investigation of the possible risks such as tether slack, spacecraft collision, tether rupture, tether-tug intertwist and destabilizing of the rug's attitude. The influence of the initial conditions and the magnitudes of the thrust are studied.展开更多
In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system(GNSS).Owing to the special design of COMPASS which implements...In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system(GNSS).Owing to the special design of COMPASS which implements several geo-stationary satellites(GEO),time synchronization can be highly accurate via microwave links between ground stations to the GEO satellites.Serving as space-borne relay stations,the GEO satellites can further disseminate time and frequency signals to other satellites such as the inclined geo-synchronous(IGSO)and mid-earth orbit(MEO)satellites within the system.It is shown that,because of the accuracy in clock synchronization,the theoretical accuracy of COMPASS positioning and navigation will surpass that of the GPS.In addition,the COMPASS system can function with its entire positioning,navigation,and time-dissemination services even without the ground link,thus making it much more robust and secure.We further show that time dissemination using the COMPASS-GEO satellites to earth-fixed stations can achieve very high accuracy,to reach 100 ps in time dissemination and 3 cm in positioning accuracy,respectively.In this paper,we also analyze two feasible synchronization plans.All special and general relativistic effects related to COMPASS clocks frequency and time shifts are given.We conclude that COMPASS can reach centimeter-level positioning accuracy and discuss potential applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11272345)
文摘To control the growth of space debris in the geostationary earth orbit (GEO), a novel solution of net capture and tether-tugging reorbiting is proposed. After capture, the tug (i.e., active spacecraft), tether, net, and target (i.e., GEO debris) constitute a rig- id-flexible coupled tethered combination system (TCS), and subsequently the system is transported to the graveyard orbit by a thruster equipped on the tug. This paper attempts to study the dynamics of tether-tugging leorbiting after net capture. The net is equivalent to four flexible bridles, and the tug and target are viewed as rigid bodies. A sophisticated mathematical model is developed, taking into account the system orbital motion, relative motion of two spacecraft and spacecraft attitude motion. Given the complexity of the model, the numerical method is adopted to study the system dynamics characteristics. Particular attention is given to the investigation of the possible risks such as tether slack, spacecraft collision, tether rupture, tether-tug intertwist and destabilizing of the rug's attitude. The influence of the initial conditions and the magnitudes of the thrust are studied.
基金supported by the Ministry of Science and Technology of China(Grant No.2010CB922901)Tsinghua University under its Scientific Research Initiative Program(Grant No.20091081474)a special research fund from the National Institute of Metrology of China(NIM)
文摘In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system(GNSS).Owing to the special design of COMPASS which implements several geo-stationary satellites(GEO),time synchronization can be highly accurate via microwave links between ground stations to the GEO satellites.Serving as space-borne relay stations,the GEO satellites can further disseminate time and frequency signals to other satellites such as the inclined geo-synchronous(IGSO)and mid-earth orbit(MEO)satellites within the system.It is shown that,because of the accuracy in clock synchronization,the theoretical accuracy of COMPASS positioning and navigation will surpass that of the GPS.In addition,the COMPASS system can function with its entire positioning,navigation,and time-dissemination services even without the ground link,thus making it much more robust and secure.We further show that time dissemination using the COMPASS-GEO satellites to earth-fixed stations can achieve very high accuracy,to reach 100 ps in time dissemination and 3 cm in positioning accuracy,respectively.In this paper,we also analyze two feasible synchronization plans.All special and general relativistic effects related to COMPASS clocks frequency and time shifts are given.We conclude that COMPASS can reach centimeter-level positioning accuracy and discuss potential applications.