The prediction of shoreline erosion is vital for coastal management. This study aims to utilize geo-informatics technology to increase accuracy of a shoreline prediction model along two study sites in Samutprakarn pro...The prediction of shoreline erosion is vital for coastal management. This study aims to utilize geo-informatics technology to increase accuracy of a shoreline prediction model along two study sites in Samutprakarn province and in Prachuabkirikhan province. Predicting coastline change using remote sensing together with GIS (geographic information system) is a spat^o-temporal technology, which can continuously provide perspectives of coastal areas. Due to a long term of operational period of LANDSAT satellite, it is useful to enhance accuracy of prediction model. LANDSAT-5 TM images acquired during 1999-2009 were used to produce historical shoreline vectors. Physical data were modified to be input data of digital shoreline analysis system. The model was validated. Linear regressions were applied in order to derive equations of erosion magnitude. The result presents that averaged erosion and accretion rate along Samutprakarn province was 22.30 meters/year and 2.94 meters/year, respectively. On the other hand, the average rate of coastal erosion along Prachuabkirikhan province was much lower, being 2.48 meters/year while the accretion rate was approximately 4.11 meters/year. The predicted shoreline change at Samutprakarn province in 2019 is about -132.69 ~ 0.758 meters while at Prachuabkirikhan is 40.58 ~ 0.0012 meters. In conclusion, this prediction model focused the changing of shoreline in long term and accuracy of the model could be improved by increasing number of shorelines vectors, transect intervals and resolution of satellite images. Clearly, the model is flexible and can be applied in other particular areas for coastal zone management in Thailand.展开更多
The degradation of forest and soil contribute significantly to carbon emission to the atmosphere leading to the build-up of carbon dioxide in atmosphere and contributing to global warming. Consequences of climate chan...The degradation of forest and soil contribute significantly to carbon emission to the atmosphere leading to the build-up of carbon dioxide in atmosphere and contributing to global warming. Consequences of climate change are not only the rise in global temperatures, but also changes in the precipitation patterns, which could affect agricultural production, food security, human health and long-term ecosystem properties balance. The deforestation and land degradation are major sources of GHG (greenhouse gas) emissions. International negotiations and dialogues on REDD+ mechanism are held for both national and local level mitigation policies formulation for the reduction of carbon emission from land use, land use change and forestry sector. The reduction of emissions from fossil fuel combustion and avoidance of deforestation and forest/land degradation constitute lasting and long-term solutions for mitigating climate change. There is an urgent need of relevant and efficient methods of measuring forest and soil carbon through application of the latest geospatial technologies, i.e., GIS (geographic information system), Remote Sensing and LiDAR (Light Detection and Ranging). These technologies can support the precise measurement of carbon stocks, as well as, offer cost effective and interoperable data generation methods. The REDD+ mechanism is being promoted worldwide mainly to reduce the diminishing of forest in developing countries. Such an approach must consider use rights, sustainable management of forests, ensuring and safe-guarding the benefit sharing mechanism and good governance, along with the legal framework and local livelihood concerns.展开更多
GIS (geographic information systems) is often used for planning purposes in forestry. This is mainly used to give directives for the operators to cut the trees. And nowadays, it is also used for marking of areas wit...GIS (geographic information systems) is often used for planning purposes in forestry. This is mainly used to give directives for the operators to cut the trees. And nowadays, it is also used for marking of areas with high environmental values where considerations should be made. The minor used techniques is to incorporate soil information maps as an overlay to give information to forest machine operators where less good trafficability is to be expected, especially after a heavy rain. By marking areas with bad bearing capacity, the operators may save both time and money, and do not bog down with the machine. When the soils bearing capacity is less than 0.7 MPa and the ground pressure of the machine is more than 80 kPa, either smaller machines must be used or bogey tracks should be used to decrease the risk for getting stuck or causing severe rutting. By choosing good types of bogey tracks both rutting and fuel consumption will be decreased for the health of forest land and the contractor.展开更多
The War of the Triple Alliance was an international military conflict in South America, fought from 1864 to 1870 between Paraguay and the Triple Alliance of Argentina, Brazil, and Uruguay. In 1939, according to the pr...The War of the Triple Alliance was an international military conflict in South America, fought from 1864 to 1870 between Paraguay and the Triple Alliance of Argentina, Brazil, and Uruguay. In 1939, according to the provisions of the Arb6-Cantilo Treaty, it was established that the international boundary between Argentina and Paraguay passed through the deepest channel of the Pilcomayo River. The natural complexity of the river, plus the condition of acting as international border, led to perform this analysis. The main goal was to implement geo-processing techniques to map the evolution in the drainage pattern, linked to natural processes or human activities from 1951 to today. Satellite imagery and historical maps were integrated upon a Geographic Information System (GIS); to interpret the changes occurred in the last 60 years along the Pilcomayo River channel which is approximately 20,000 km^2 located in Argentina and Paraguay. The collected information allowed the authors to evaluate and demonstrate the degree of correspondence between the river variation and the topographic position of the international boundary between Argentina and Paraguay, and also to diagnose what could occur in the near future.展开更多
With rapid development of remote sensing technology, the resolution of remote sensing images is increasingly improved; then people can extract more useful data and information from these images. Thus, an important inf...With rapid development of remote sensing technology, the resolution of remote sensing images is increasingly improved; then people can extract more useful data and information from these images. Thus, an important information extraction method from remote sensing images - image classification, becomes more and more important. Based on phenopthase and band composition characteristics, this paper firstly discusses the important role of background parameters in remote sensing images classification; then based on geographical infomation system technology, the computerized automatic classification to high-medium-low-yield croplands in Dingxiang County of Shanxi Province in rotate sensing images has been carried out by using eompound layers classification method of multi-thematic information; compared the classification result to the visual interpretation results, the accuracy increases from 70% to above 90%.展开更多
文摘The prediction of shoreline erosion is vital for coastal management. This study aims to utilize geo-informatics technology to increase accuracy of a shoreline prediction model along two study sites in Samutprakarn province and in Prachuabkirikhan province. Predicting coastline change using remote sensing together with GIS (geographic information system) is a spat^o-temporal technology, which can continuously provide perspectives of coastal areas. Due to a long term of operational period of LANDSAT satellite, it is useful to enhance accuracy of prediction model. LANDSAT-5 TM images acquired during 1999-2009 were used to produce historical shoreline vectors. Physical data were modified to be input data of digital shoreline analysis system. The model was validated. Linear regressions were applied in order to derive equations of erosion magnitude. The result presents that averaged erosion and accretion rate along Samutprakarn province was 22.30 meters/year and 2.94 meters/year, respectively. On the other hand, the average rate of coastal erosion along Prachuabkirikhan province was much lower, being 2.48 meters/year while the accretion rate was approximately 4.11 meters/year. The predicted shoreline change at Samutprakarn province in 2019 is about -132.69 ~ 0.758 meters while at Prachuabkirikhan is 40.58 ~ 0.0012 meters. In conclusion, this prediction model focused the changing of shoreline in long term and accuracy of the model could be improved by increasing number of shorelines vectors, transect intervals and resolution of satellite images. Clearly, the model is flexible and can be applied in other particular areas for coastal zone management in Thailand.
文摘The degradation of forest and soil contribute significantly to carbon emission to the atmosphere leading to the build-up of carbon dioxide in atmosphere and contributing to global warming. Consequences of climate change are not only the rise in global temperatures, but also changes in the precipitation patterns, which could affect agricultural production, food security, human health and long-term ecosystem properties balance. The deforestation and land degradation are major sources of GHG (greenhouse gas) emissions. International negotiations and dialogues on REDD+ mechanism are held for both national and local level mitigation policies formulation for the reduction of carbon emission from land use, land use change and forestry sector. The reduction of emissions from fossil fuel combustion and avoidance of deforestation and forest/land degradation constitute lasting and long-term solutions for mitigating climate change. There is an urgent need of relevant and efficient methods of measuring forest and soil carbon through application of the latest geospatial technologies, i.e., GIS (geographic information system), Remote Sensing and LiDAR (Light Detection and Ranging). These technologies can support the precise measurement of carbon stocks, as well as, offer cost effective and interoperable data generation methods. The REDD+ mechanism is being promoted worldwide mainly to reduce the diminishing of forest in developing countries. Such an approach must consider use rights, sustainable management of forests, ensuring and safe-guarding the benefit sharing mechanism and good governance, along with the legal framework and local livelihood concerns.
文摘GIS (geographic information systems) is often used for planning purposes in forestry. This is mainly used to give directives for the operators to cut the trees. And nowadays, it is also used for marking of areas with high environmental values where considerations should be made. The minor used techniques is to incorporate soil information maps as an overlay to give information to forest machine operators where less good trafficability is to be expected, especially after a heavy rain. By marking areas with bad bearing capacity, the operators may save both time and money, and do not bog down with the machine. When the soils bearing capacity is less than 0.7 MPa and the ground pressure of the machine is more than 80 kPa, either smaller machines must be used or bogey tracks should be used to decrease the risk for getting stuck or causing severe rutting. By choosing good types of bogey tracks both rutting and fuel consumption will be decreased for the health of forest land and the contractor.
文摘The War of the Triple Alliance was an international military conflict in South America, fought from 1864 to 1870 between Paraguay and the Triple Alliance of Argentina, Brazil, and Uruguay. In 1939, according to the provisions of the Arb6-Cantilo Treaty, it was established that the international boundary between Argentina and Paraguay passed through the deepest channel of the Pilcomayo River. The natural complexity of the river, plus the condition of acting as international border, led to perform this analysis. The main goal was to implement geo-processing techniques to map the evolution in the drainage pattern, linked to natural processes or human activities from 1951 to today. Satellite imagery and historical maps were integrated upon a Geographic Information System (GIS); to interpret the changes occurred in the last 60 years along the Pilcomayo River channel which is approximately 20,000 km^2 located in Argentina and Paraguay. The collected information allowed the authors to evaluate and demonstrate the degree of correspondence between the river variation and the topographic position of the international boundary between Argentina and Paraguay, and also to diagnose what could occur in the near future.
文摘With rapid development of remote sensing technology, the resolution of remote sensing images is increasingly improved; then people can extract more useful data and information from these images. Thus, an important information extraction method from remote sensing images - image classification, becomes more and more important. Based on phenopthase and band composition characteristics, this paper firstly discusses the important role of background parameters in remote sensing images classification; then based on geographical infomation system technology, the computerized automatic classification to high-medium-low-yield croplands in Dingxiang County of Shanxi Province in rotate sensing images has been carried out by using eompound layers classification method of multi-thematic information; compared the classification result to the visual interpretation results, the accuracy increases from 70% to above 90%.