期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器学习理论的土壤侵蚀模型构建 被引量:5
1
作者 蔡喨喨 严力蛟 徐奂 《中国生态农业学报》 CAS CSCD 北大核心 2014年第9期1122-1128,共7页
土壤侵蚀一直是环境问题中的重点和难点。由于影响土壤侵蚀的因素众多,传统的预测模型存在数据获取困难、适用范围小、研究周期长等不足,使得对土壤侵蚀的预测无法做到快速、便捷。支持向量机(Support Vector Machine,SVM)是机器学习中... 土壤侵蚀一直是环境问题中的重点和难点。由于影响土壤侵蚀的因素众多,传统的预测模型存在数据获取困难、适用范围小、研究周期长等不足,使得对土壤侵蚀的预测无法做到快速、便捷。支持向量机(Support Vector Machine,SVM)是机器学习中的一个重要模型,具有非线性映射、自我学习能力、全局最小值、对输入数据变化不敏感等优点,在建立土壤侵蚀量相关性预测模型方面较传统预测模型具有更强的优势。本研究应用浙江省诸暨市浦阳江水文站的降雨数据,利用ArcGIS地理信息系统确定水文站上游流域为研究区域。以降雨量、研究区域地理数据维度(包括坡度数据、坡长数据、土壤信息、土地利用类型)作为影响因子,输入支持向量机模型,进行流域内土壤侵蚀量预测。将水文站土壤侵蚀量实测数据作为对照值,用模型输出值检验,从而在取值范围内选择出模型最优的参数组。用影响因子数据和土壤侵蚀量数据对使用最优参数的模型进行检验,模型的预测准确率最高达到75%。其中,降雨量对土壤侵蚀量的影响最大,降雨量单因子预测准确率在70%以上,其余因子预测准确率在3.5%左右。最终得到一个土壤侵蚀量相关性预测模型,通过水文站降雨数据以及地理信息,即可预测当地土壤侵蚀量,准确率达到75%。 展开更多
关键词 土壤侵蚀 向量机模型 机器学习 降雨量 地理数据维度 诸暨市
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部