The spatial and temporal dynamics of soil erosion in Xingguo County, Jiangxi Province, China were studied using multi-period remote sensing images and GIS. The results indicated that the soil erosion status of the reg...The spatial and temporal dynamics of soil erosion in Xingguo County, Jiangxi Province, China were studied using multi-period remote sensing images and GIS. The results indicated that the soil erosion status of the region has been improving, particularly since the 1980s, with the erosion rate showing an evident decline over the past 30 years. The improvement showed not only in the decline of eroded soil area, but also with the reduction in the extent of erosion. The extent of erosion mainly changed by one level, and the change primarily occurred with the severely or moderately eroded soil types. However, in general, soil erosion was still an overriding problem in the region with some areas becoming more serious, especially those with large quantities of granite.展开更多
By using soil erosion maps of four different time periods and a digital elevation model (DEM), in combination withthe remote sensing and GIS technologies, soil erosion dynamics in Xingguo County of Jiangxi Province in...By using soil erosion maps of four different time periods and a digital elevation model (DEM), in combination withthe remote sensing and GIS technologies, soil erosion dynamics in Xingguo County of Jiangxi Province in South Chinawere analyzed on both temporal and spatial scales in soils of different parent materials, altitudes and slopes. The resultsshowed that from 1958 to 2000 severe soil erosion was coming under control with a decreasing percentage of the land undersevere erosion. It was also found that the soils developed from Quaternary red clay, granite and purple shale were moresusceptible to soil erosion and that areas sitting between 200 to 500 m in altitude with a slope less than 3° or between7° to 20° where human activities were frequent remained to be zones where soil erosion was most likely to occur. Theseareas deserve special attention in monitoring and controlling.展开更多
Due to long-term over-exploitation of groundwater in Beijing Municipality, regional groundwater funnels have formed and land subsidence has been induced. By combining a groundwater monitoring network, GPS monitor- ing...Due to long-term over-exploitation of groundwater in Beijing Municipality, regional groundwater funnels have formed and land subsidence has been induced. By combining a groundwater monitoring network, GPS monitor- ing network data, radar satellite SAR data, GIS and other new technologies, a coupled process model based on the dy- namic variation of groundwater and the deformation response of land subsidence has been established. The dynamic variation of groundwater fimnels and the land subsidence response process were analyzed systematically in Beijing. Study results indicate that current groundwater funnel areas are distributed mainly in the southwest of Shunyi District, the northeast of Chaoyang District and the northwest of Tongzhou District, with an average decline rate of groundwa- ter level of 2.66 rn/yr and a maximum of 3.82 m/yr in the center of the funnels. Seasonal and interannual differences exist in the response model of land subsidence to groundwater funnels with uneven spatial and temporal distribution, where the maximum land subsidence rate was about --41.08 mm/yr and the area with a subsidence rate greater than 30 mm/yr was about 1637.29 km2. Although a consistency was revealed to exist between a groundwater funnel and the spatial distribution characteristics of the corresponding land subsidence funnel, this consistency was not perfect. The results showed that the response model of land subsidence to the dynamic variation of groundwater was more revealing when combining conventional technologies with InSAR, GIS, GPS, providing a new strategy for environmental and hydrogeological research and a scientific basis for regional land subsidence control.展开更多
基金1 Project supported by the National Natural Science Foundation of China (No. 49631010).
文摘The spatial and temporal dynamics of soil erosion in Xingguo County, Jiangxi Province, China were studied using multi-period remote sensing images and GIS. The results indicated that the soil erosion status of the region has been improving, particularly since the 1980s, with the erosion rate showing an evident decline over the past 30 years. The improvement showed not only in the decline of eroded soil area, but also with the reduction in the extent of erosion. The extent of erosion mainly changed by one level, and the change primarily occurred with the severely or moderately eroded soil types. However, in general, soil erosion was still an overriding problem in the region with some areas becoming more serious, especially those with large quantities of granite.
基金the National Natural Science Foundation of China (No. 40471081), the Innovation Programme ofChinese Academy of Sciences (No. KZCX3-SW-422), and the Canadian International Development Agency, Canada.
文摘By using soil erosion maps of four different time periods and a digital elevation model (DEM), in combination withthe remote sensing and GIS technologies, soil erosion dynamics in Xingguo County of Jiangxi Province in South Chinawere analyzed on both temporal and spatial scales in soils of different parent materials, altitudes and slopes. The resultsshowed that from 1958 to 2000 severe soil erosion was coming under control with a decreasing percentage of the land undersevere erosion. It was also found that the soils developed from Quaternary red clay, granite and purple shale were moresusceptible to soil erosion and that areas sitting between 200 to 500 m in altitude with a slope less than 3° or between7° to 20° where human activities were frequent remained to be zones where soil erosion was most likely to occur. Theseareas deserve special attention in monitoring and controlling.
基金Under the auspices of Program of International S&T Cooperation (No. 2010DFA92400)Non-profit Industry Financial Program of the Ministry of Water Resources (No. 200901091)+2 种基金Beijing Municipal Natural Science Foundation (No. 8101002)Beijing Municipal Education Commission Plans to Focus Science and Technology Projects (No. KZ201010028030)National Natural Science Foundation of China (No. 41130744,41171335)
文摘Due to long-term over-exploitation of groundwater in Beijing Municipality, regional groundwater funnels have formed and land subsidence has been induced. By combining a groundwater monitoring network, GPS monitor- ing network data, radar satellite SAR data, GIS and other new technologies, a coupled process model based on the dy- namic variation of groundwater and the deformation response of land subsidence has been established. The dynamic variation of groundwater fimnels and the land subsidence response process were analyzed systematically in Beijing. Study results indicate that current groundwater funnel areas are distributed mainly in the southwest of Shunyi District, the northeast of Chaoyang District and the northwest of Tongzhou District, with an average decline rate of groundwa- ter level of 2.66 rn/yr and a maximum of 3.82 m/yr in the center of the funnels. Seasonal and interannual differences exist in the response model of land subsidence to groundwater funnels with uneven spatial and temporal distribution, where the maximum land subsidence rate was about --41.08 mm/yr and the area with a subsidence rate greater than 30 mm/yr was about 1637.29 km2. Although a consistency was revealed to exist between a groundwater funnel and the spatial distribution characteristics of the corresponding land subsidence funnel, this consistency was not perfect. The results showed that the response model of land subsidence to the dynamic variation of groundwater was more revealing when combining conventional technologies with InSAR, GIS, GPS, providing a new strategy for environmental and hydrogeological research and a scientific basis for regional land subsidence control.