Distributed virtual coal-mine geography environment(CM-DVGE) researches the virtual reality simulation of coal-mine environment in cyberspace and the performance of coal production process. The goal is to deal with ...Distributed virtual coal-mine geography environment(CM-DVGE) researches the virtual reality simulation of coal-mine environment in cyberspace and the performance of coal production process. The goal is to deal with the practical safety problems of observation, analysis, design and training during the underground coal production process. This paper first probed into the evolution of CM-DVGE from a historical point of view, then respectively analyzed the characteristics of its physical progressive levels according to the cognitivd law and its logical structure of data on the basis of data flow, and concluded by putting forward the prospect of the application of CM-DVGE, thus enriched and developed the method of synthetic study of coal mine.展开更多
Previous research on the Virtual Geographic Environment (VGE) has focused mainly on representation rather than geographic analysis. However, geographic analysis plays a significant role in modem geography. To addres...Previous research on the Virtual Geographic Environment (VGE) has focused mainly on representation rather than geographic analysis. However, geographic analysis plays a significant role in modem geography. To address this issue, this paper systematically examines theories and implementing VGE techniques that support geographical analysis and simulation. Based on its framework, VGE can be divided into four subtypes. These are the data environment, modeling environment, expression environment, and collaborative environment. The functions and key techniques of each are examined, and some case studies are discussed. This study provides direction for necessary new developments of advanced VGE platforms.展开更多
The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent sel...The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of a species are under selection to avoid hybridization while others are not, population differentiation and even speciation can result. Spadefoot toad populations Spea multiplicata that are sympatric with a congener have undergone reinforcement. This reinforcement has resulted not only in increased reproductive isolation from the congener, but also in the evolution of reproductive isolation from nearby and distant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of geographic distance and divergent selective environments to population structure across this regional scale in S. multiplicata, based on genotypes from six nuclear microsatellite markers. We compared groups of populations varying in both geographic location and in the presence of a congener. Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal components all indicate that geographic distance is the stronger contributor to genetic differentiation among S. multiplicata populations at a regional scale. However, we found evidence that adaptation to divergent selective environments also contributes to population structure. Our findings highlight how variation in the balance of evolutionary forces acting across a species' range can lead to variation in the relative contributions of geographic distance and local adaptation to population differentiation across different spatial scales.展开更多
文摘Distributed virtual coal-mine geography environment(CM-DVGE) researches the virtual reality simulation of coal-mine environment in cyberspace and the performance of coal production process. The goal is to deal with the practical safety problems of observation, analysis, design and training during the underground coal production process. This paper first probed into the evolution of CM-DVGE from a historical point of view, then respectively analyzed the characteristics of its physical progressive levels according to the cognitivd law and its logical structure of data on the basis of data flow, and concluded by putting forward the prospect of the application of CM-DVGE, thus enriched and developed the method of synthetic study of coal mine.
基金supported by Key Project of National Natural Science Foundation of China (Grant No. 40730527)
文摘Previous research on the Virtual Geographic Environment (VGE) has focused mainly on representation rather than geographic analysis. However, geographic analysis plays a significant role in modem geography. To address this issue, this paper systematically examines theories and implementing VGE techniques that support geographical analysis and simulation. Based on its framework, VGE can be divided into four subtypes. These are the data environment, modeling environment, expression environment, and collaborative environment. The functions and key techniques of each are examined, and some case studies are discussed. This study provides direction for necessary new developments of advanced VGE platforms.
文摘The causes of population differentiation can provide insight into the origins of early barriers to gene flow. Two key drivers of population differentiation are geographic distance and local adaptation to divergent selective environments. When reproductive isolation arises because some populations of a species are under selection to avoid hybridization while others are not, population differentiation and even speciation can result. Spadefoot toad populations Spea multiplicata that are sympatric with a congener have undergone reinforcement. This reinforcement has resulted not only in increased reproductive isolation from the congener, but also in the evolution of reproductive isolation from nearby and distant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of geographic distance and divergent selective environments to population structure across this regional scale in S. multiplicata, based on genotypes from six nuclear microsatellite markers. We compared groups of populations varying in both geographic location and in the presence of a congener. Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal components all indicate that geographic distance is the stronger contributor to genetic differentiation among S. multiplicata populations at a regional scale. However, we found evidence that adaptation to divergent selective environments also contributes to population structure. Our findings highlight how variation in the balance of evolutionary forces acting across a species' range can lead to variation in the relative contributions of geographic distance and local adaptation to population differentiation across different spatial scales.