A new approach is proposed to use the covariant scalar equations of the a-coordinate (the covariant method), in which the pressure gradient force (PGF) has only one term in each horizontal momentum equation, and t...A new approach is proposed to use the covariant scalar equations of the a-coordinate (the covariant method), in which the pressure gradient force (PGF) has only one term in each horizontal momentum equation, and the PGF errors are much reduced in the computational space. In addition, the validity of reducing the PGF errors by this covariant method in the computational and physical space over steep terrain is investigated. First, the authors implement a set of idealized experiments of increasing terrain slope to compare the PGF errors of the covariant method and those of the classic method in the computational space. The results demonstrate that the PGF errors of the covariant method are consistently much-reduced, compared to those of the classic method. More importantly, the steeper the terrain, the greater the reduction in the ratio of the PGF errors via the covariant method. Next, the authors use geometric analysis to further investigate the PGF errors in the physical space, and the results illustrates that the PGF of the covariant method equals that of the classic method in the physical space; namely, the covariant method based on the non-orthogonal a-coordinate cannot reduce the PGF errors in the physical space. However, an orthogonal method can reduce the PGF errors in the physical space. Finally, a set of idealized experiments are carried out to validate the results obtained by the geometric analysis. These results indicate that the covariant method may improve the simulation of variables relevant to pressure, in addition to pressure itself, near steep terrain.展开更多
Based on the extended mild-slope equation,a large-scale wave module is developed.By combining the eikonal equation and the modified wave action equation,the wave model can account for diffraction in most situations su...Based on the extended mild-slope equation,a large-scale wave module is developed.By combining the eikonal equation and the modified wave action equation,the wave model can account for diffraction in most situations such as in the lee of islands and breakwaters,and using unstructured meshes provides great flexibility for modelling the wave in the complex geomorphology of barriers and islands,also allowing for refinement of the grid resolution within computationally important domains.The numerical implementation of the module is based on the explicit second-order upwind finite-volume schemes in geographic space,the Flux-Corrected Transport(FCT)algorithm in frequency space and the implicit Crank-Nicolson method in directional space.The three-dimensional hydrodynamic module is then modified to couple with the wave model,where the wave readily provides the depth-dependent radiation stress and the wave-induced turbulence coefficient for the current fields,and the wave propagation takes into account the current-induced advection,refraction and diffraction of wave energy and the effect of water level.The applicability of the proposed model to calculate Snell’s Law,wave transformation over the breakwaters and the elliptic shoal,wave propagation over the rip current field and the undertow on a sloping beach is evaluated.Numerical results show that the present model makes better predictions of the near-shore wave propagation and complex three-dimensional(3D)near-shore circulation driven by the waves,considering analytical solutions and experimental values.展开更多
基金supported by the National Basic Research Program of China(973 Program)[grant number 2015CB954102]the National Natural Science Foundation of China[grant number41305095],[grant number 41175064]
文摘A new approach is proposed to use the covariant scalar equations of the a-coordinate (the covariant method), in which the pressure gradient force (PGF) has only one term in each horizontal momentum equation, and the PGF errors are much reduced in the computational space. In addition, the validity of reducing the PGF errors by this covariant method in the computational and physical space over steep terrain is investigated. First, the authors implement a set of idealized experiments of increasing terrain slope to compare the PGF errors of the covariant method and those of the classic method in the computational space. The results demonstrate that the PGF errors of the covariant method are consistently much-reduced, compared to those of the classic method. More importantly, the steeper the terrain, the greater the reduction in the ratio of the PGF errors via the covariant method. Next, the authors use geometric analysis to further investigate the PGF errors in the physical space, and the results illustrates that the PGF of the covariant method equals that of the classic method in the physical space; namely, the covariant method based on the non-orthogonal a-coordinate cannot reduce the PGF errors in the physical space. However, an orthogonal method can reduce the PGF errors in the physical space. Finally, a set of idealized experiments are carried out to validate the results obtained by the geometric analysis. These results indicate that the covariant method may improve the simulation of variables relevant to pressure, in addition to pressure itself, near steep terrain.
基金supported by the Fund for Creative Research Groups(Grant No.51221961)
文摘Based on the extended mild-slope equation,a large-scale wave module is developed.By combining the eikonal equation and the modified wave action equation,the wave model can account for diffraction in most situations such as in the lee of islands and breakwaters,and using unstructured meshes provides great flexibility for modelling the wave in the complex geomorphology of barriers and islands,also allowing for refinement of the grid resolution within computationally important domains.The numerical implementation of the module is based on the explicit second-order upwind finite-volume schemes in geographic space,the Flux-Corrected Transport(FCT)algorithm in frequency space and the implicit Crank-Nicolson method in directional space.The three-dimensional hydrodynamic module is then modified to couple with the wave model,where the wave readily provides the depth-dependent radiation stress and the wave-induced turbulence coefficient for the current fields,and the wave propagation takes into account the current-induced advection,refraction and diffraction of wave energy and the effect of water level.The applicability of the proposed model to calculate Snell’s Law,wave transformation over the breakwaters and the elliptic shoal,wave propagation over the rip current field and the undertow on a sloping beach is evaluated.Numerical results show that the present model makes better predictions of the near-shore wave propagation and complex three-dimensional(3D)near-shore circulation driven by the waves,considering analytical solutions and experimental values.