The global navigation satellite system reflectometry (GNSS-R) technique has been proven to be a powerful tool for retrieving geophysical parameters of ocean and land/hydrology processes. The ultimate goal for such G...The global navigation satellite system reflectometry (GNSS-R) technique has been proven to be a powerful tool for retrieving geophysical parameters of ocean and land/hydrology processes. The ultimate goal for such GNSS-R applications is to achieve large-scale, all- weather, and full-time mapping using spaceborne platforms. In order to ensure both GNSS-R receiver and algorithm meet the requirements of spaceborne observations, airborne experimental campaigns need to be first carried out for early testing and validation purposes. This paper presents a first comprehensive overview of China's airborne GNSS-R campaign conducted on May 30, 2014. There were two objectives for this campaign: (l) to examine the capability of the GNSS-R receiver developed by the National Space Science Center, Chinese Academy of Sciences, for airborne observations and (2) to study algo-rithms for soil moisture and altimetry retrievals. In this paper, initial results of soil moisture retrievals are pre- sented. The left-hand circularly polarized-predominant satellite information was successfully used to retrieval soil moisture over the cropland. The right-hand circularly polarized components of the reflected signals were also received and examined. The GPS-derived soil moisture results, on the one hand, correctly represented the spatial variations of the soil moisture along the tracking of the flight; on the other hand, the results underestimated the ground-truth. Errors from the retrieval model and from the positioning and effects from the vegetation layer and from the atmospheric water vapor were the primary causes of the uncertainties in soil moisture retrievals using the airborne GNSS-R data. This airborne experimental campaign firstly investigate that China has the capability to perform airborne GNSS-R observation using the self-developed receiver, although the receiver developed by the NSSC needs to be further examined for its capability for spaceborne observation. The early findings of this study will provide illustrations for planned future airborne campaigns.展开更多
基金supported by the12th Five-Year Plan of Civil Aerospace Technology Advanced Research Projects(D030101)supported by the National Youth Natural Science Foundation of China(41405040,41405039)the Scientific Research and Equipment Development Project of Chinese Academy of Sciences(YZ201129)
文摘The global navigation satellite system reflectometry (GNSS-R) technique has been proven to be a powerful tool for retrieving geophysical parameters of ocean and land/hydrology processes. The ultimate goal for such GNSS-R applications is to achieve large-scale, all- weather, and full-time mapping using spaceborne platforms. In order to ensure both GNSS-R receiver and algorithm meet the requirements of spaceborne observations, airborne experimental campaigns need to be first carried out for early testing and validation purposes. This paper presents a first comprehensive overview of China's airborne GNSS-R campaign conducted on May 30, 2014. There were two objectives for this campaign: (l) to examine the capability of the GNSS-R receiver developed by the National Space Science Center, Chinese Academy of Sciences, for airborne observations and (2) to study algo-rithms for soil moisture and altimetry retrievals. In this paper, initial results of soil moisture retrievals are pre- sented. The left-hand circularly polarized-predominant satellite information was successfully used to retrieval soil moisture over the cropland. The right-hand circularly polarized components of the reflected signals were also received and examined. The GPS-derived soil moisture results, on the one hand, correctly represented the spatial variations of the soil moisture along the tracking of the flight; on the other hand, the results underestimated the ground-truth. Errors from the retrieval model and from the positioning and effects from the vegetation layer and from the atmospheric water vapor were the primary causes of the uncertainties in soil moisture retrievals using the airborne GNSS-R data. This airborne experimental campaign firstly investigate that China has the capability to perform airborne GNSS-R observation using the self-developed receiver, although the receiver developed by the NSSC needs to be further examined for its capability for spaceborne observation. The early findings of this study will provide illustrations for planned future airborne campaigns.