[Objective] The aim was to isolate and identify a taxol-producing endophytic fungus from Taxus media. [Method] 32 strains of endophytic fungi were identified form the inner bark of T. media,and their fermentation prod...[Objective] The aim was to isolate and identify a taxol-producing endophytic fungus from Taxus media. [Method] 32 strains of endophytic fungi were identified form the inner bark of T. media,and their fermentation products were detected by high performance liquid chromatography (HPLC). [Result] Through the screening,a strain of taxol-producing endophytic fungi M57 was obtained,which could produce 45-50 μg/L of taxol,and M57 was defined as Rhizopus sp. through morphological observation and 18S rDNA sequence analysis. [Conclusion] The finding of Rhizopus sp. M57 provided a promising strain for producing taxol with taxol-producing fungi fermentation process.展开更多
Orobanche spp. (broomrapes) are holoparasitic plants distributed predominantly in the Northern Hemisphere parasitizing the roots of a range of plant species mainly in wild ecosystems. Orobanche species cause severe ...Orobanche spp. (broomrapes) are holoparasitic plants distributed predominantly in the Northern Hemisphere parasitizing the roots of a range of plant species mainly in wild ecosystems. Orobanche species cause severe yield reduction of many important crops. There are only very few herbicides which are able to selectively control broomrapes and different approaches have been put forward to develop natural product based pesticides to control Orobanche. Several phytopathogenic fungi were evaluated for their use as potential mycoherbicide and for ability to produce toxic metabolites which could be applied as herbicides. Using the alternative approach "suicidal germination", interesting results were obtained by testing two microbial metabolites (fusicoccins and ophiobolin A) especially with Orobanche species whose germination is not induced by the synthetic strigolactone GR24. From pea root exudates, peagol and peagoldione, close related to strigolactones, and three polyphenols, named peapolyphenols A-C, together with already well known polyphenol and a chalcone, were isolated. They showed a selective stimulation of Orobanche seed germination with the last two and peapolyphenol A showing a specific stimulatory activity on O. foetida. This review describes the most recent results achieved on Orobanche bio-control, mainly focusing on those regarding O. ramosa, O. crenata and O. foetida.展开更多
The most important and valuable grass species in Polish grassland swards are known to host symptomless endophytic fungi, from Neotyphodium genera. For agricultural practice, endophyte-plant symbiosis is both positive ...The most important and valuable grass species in Polish grassland swards are known to host symptomless endophytic fungi, from Neotyphodium genera. For agricultural practice, endophyte-plant symbiosis is both positive and negative. Endophyte-infected grasses express range of adaptations to abiotic and biotic stress. However, in certain circumstances endophytes may produce toxic alkaloids that have been linked with animal production and health problems. Intensive research towards identification of endophyte fungi growing symptomless in grasses of semi-natural grasslands was undertaken in Poland. The aims of our studies were to discover endophytes distribution across country with relation to site conditions and few climatic factors. Endophytes were found not to be very frequent, but distributed rather evenly across explored regions. Endophyte fungi were found the most frequently in meadow fescue (Festucapratensis Huds.) plants, which is common fact, as contrary to presence of endophyte hyphae in tufted hairgrass (Deschampsia cespitosa UP.B) and smooth-stalked meadow grass (Poa pratensis L.). Presence of endophytes in explored regions was related to average longitude of collection site (0.63^**) and number of sunshine hours per year (-0.70^**). Intensity ofendophyte colonization was related to yearly mean air temperature (-0.69^**) and to the length of winter (0.80^**). Presence of endophytes was not related to intensity of colonization. The selective pressure of usage intensity towards more frequent endophyte colonization was not confirmed.展开更多
Over the last three decades, the presence and functional roles of arbuscular mycorrhizal (AM) fungi in wetland habitats have received increasing attention. This review summarized the mycorrhizal status in wetlands a...Over the last three decades, the presence and functional roles of arbuscular mycorrhizal (AM) fungi in wetland habitats have received increasing attention. This review summarized the mycorrhizal status in wetlands and the effect of flooding on AM fungal colonization. Plants of 99 families living in 31 different habitats have been found to be associated with AM fungi, even including submerged aquatic plants and several plant species that were thought to be nonmycorrhizal (Cyperaceae, Chenopodiaceae, and Plumbaginaceac). The functions of AM fungi in wetland ecological systems could be concluded as their influences on the composition, succession, and diversity of the wetland plant community, and the growth and nutrition of wetland plants. Affecting the composition, succession, and diversity of the wetland plant community, AM fungi have positive, negative, or neutral effects on the performance of different wetland species under different conditions. The factors that affect the application effect of AM fungi in constructed wetland (CW) include flooding, phosphorus, plant species, aerenchyma, salinity, CW types, operation modes of CW, and wastewater quality. The generalist AM fungi strains can be established spontaneously, rapidly, and extensively in wastewater bioremediation technical installations; therefore, AM fungi can be considered ideal inhabitants of technical installations for the plant-based bioremediation of groundwater contaminated by organic pollutants or other contaminants. In the future, roles of AM fungi and factors that affect the purifying capacity of AM-CW system must be understood to optimize CW ecosystem.展开更多
基金Supported by National Natural Science Foundation of China(20776058)New Century Training Programme Foundation for the Talents by the State Education Commission (NCET-06-0646)~~
文摘[Objective] The aim was to isolate and identify a taxol-producing endophytic fungus from Taxus media. [Method] 32 strains of endophytic fungi were identified form the inner bark of T. media,and their fermentation products were detected by high performance liquid chromatography (HPLC). [Result] Through the screening,a strain of taxol-producing endophytic fungi M57 was obtained,which could produce 45-50 μg/L of taxol,and M57 was defined as Rhizopus sp. through morphological observation and 18S rDNA sequence analysis. [Conclusion] The finding of Rhizopus sp. M57 provided a promising strain for producing taxol with taxol-producing fungi fermentation process.
文摘Orobanche spp. (broomrapes) are holoparasitic plants distributed predominantly in the Northern Hemisphere parasitizing the roots of a range of plant species mainly in wild ecosystems. Orobanche species cause severe yield reduction of many important crops. There are only very few herbicides which are able to selectively control broomrapes and different approaches have been put forward to develop natural product based pesticides to control Orobanche. Several phytopathogenic fungi were evaluated for their use as potential mycoherbicide and for ability to produce toxic metabolites which could be applied as herbicides. Using the alternative approach "suicidal germination", interesting results were obtained by testing two microbial metabolites (fusicoccins and ophiobolin A) especially with Orobanche species whose germination is not induced by the synthetic strigolactone GR24. From pea root exudates, peagol and peagoldione, close related to strigolactones, and three polyphenols, named peapolyphenols A-C, together with already well known polyphenol and a chalcone, were isolated. They showed a selective stimulation of Orobanche seed germination with the last two and peapolyphenol A showing a specific stimulatory activity on O. foetida. This review describes the most recent results achieved on Orobanche bio-control, mainly focusing on those regarding O. ramosa, O. crenata and O. foetida.
文摘The most important and valuable grass species in Polish grassland swards are known to host symptomless endophytic fungi, from Neotyphodium genera. For agricultural practice, endophyte-plant symbiosis is both positive and negative. Endophyte-infected grasses express range of adaptations to abiotic and biotic stress. However, in certain circumstances endophytes may produce toxic alkaloids that have been linked with animal production and health problems. Intensive research towards identification of endophyte fungi growing symptomless in grasses of semi-natural grasslands was undertaken in Poland. The aims of our studies were to discover endophytes distribution across country with relation to site conditions and few climatic factors. Endophytes were found not to be very frequent, but distributed rather evenly across explored regions. Endophyte fungi were found the most frequently in meadow fescue (Festucapratensis Huds.) plants, which is common fact, as contrary to presence of endophyte hyphae in tufted hairgrass (Deschampsia cespitosa UP.B) and smooth-stalked meadow grass (Poa pratensis L.). Presence of endophytes in explored regions was related to average longitude of collection site (0.63^**) and number of sunshine hours per year (-0.70^**). Intensity ofendophyte colonization was related to yearly mean air temperature (-0.69^**) and to the length of winter (0.80^**). Presence of endophytes was not related to intensity of colonization. The selective pressure of usage intensity towards more frequent endophyte colonization was not confirmed.
基金supported by the National Natural Science Foundation of China (Nos. 31400435 and 31270573)the Fundamental Research Funds for the Central Universities of China (No. WUT2014-IV-050)the Natural Science Foundation of Hubei Province, China (No. 2015CFB596)
文摘Over the last three decades, the presence and functional roles of arbuscular mycorrhizal (AM) fungi in wetland habitats have received increasing attention. This review summarized the mycorrhizal status in wetlands and the effect of flooding on AM fungal colonization. Plants of 99 families living in 31 different habitats have been found to be associated with AM fungi, even including submerged aquatic plants and several plant species that were thought to be nonmycorrhizal (Cyperaceae, Chenopodiaceae, and Plumbaginaceac). The functions of AM fungi in wetland ecological systems could be concluded as their influences on the composition, succession, and diversity of the wetland plant community, and the growth and nutrition of wetland plants. Affecting the composition, succession, and diversity of the wetland plant community, AM fungi have positive, negative, or neutral effects on the performance of different wetland species under different conditions. The factors that affect the application effect of AM fungi in constructed wetland (CW) include flooding, phosphorus, plant species, aerenchyma, salinity, CW types, operation modes of CW, and wastewater quality. The generalist AM fungi strains can be established spontaneously, rapidly, and extensively in wastewater bioremediation technical installations; therefore, AM fungi can be considered ideal inhabitants of technical installations for the plant-based bioremediation of groundwater contaminated by organic pollutants or other contaminants. In the future, roles of AM fungi and factors that affect the purifying capacity of AM-CW system must be understood to optimize CW ecosystem.