1研究背景已有研究表明,岩石破裂时电磁波超低频段会出现信号异常,且临近破裂时岩石附近磁场强度会出现短周期前兆变化(郝锦绮等,2003)。地磁垂直强度极化方法是目前地震磁扰动定量分析中物理含义明确、分析过程完善且获取异常信息能力...1研究背景已有研究表明,岩石破裂时电磁波超低频段会出现信号异常,且临近破裂时岩石附近磁场强度会出现短周期前兆变化(郝锦绮等,2003)。地磁垂直强度极化方法是目前地震磁扰动定量分析中物理含义明确、分析过程完善且获取异常信息能力较强的方法之一(姚休义等,2018)。该方法基于频谱分析,通过地磁场垂直分量Z和水平分量(H或G)的频谱振幅相比来定义。数值模拟结果证明,一次源来自地壳内频率1 Hz附近的磁信号垂直分量幅值大于水平分量幅值,其比值大于1(Molchanov et al,1995),故可通过该比值来突出岩石圈异常信号,同时抑制外源场的电磁信号。展开更多
A finite element method with boundary element method (FEM-BEM) is presented for computing electromagnetic induction. The features of an edge element method including the volume and surface edge element method are inve...A finite element method with boundary element method (FEM-BEM) is presented for computing electromagnetic induction. The features of an edge element method including the volume and surface edge element method are investigated in depth. Surface basis functions of edge elements to an arbitrary shape of target are derived according to the geometrical property of basis functions and applied to discretize the surface integral equation for 3-D general targets. The proposed model is presented to compute resonant frequencies and surface current of underground unexplored ordnance (UXO), and then the electromagnetic responses of single target with different frequencies and positions of sensor are simulated and results are validated by experiments.展开更多
Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is d...Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods.3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data.Thus,we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm.To eliminate the source singularities in the numerical simulations,we split the fields into primary and secondary fields.The primary fields are calculated using homogeneous or layered models with analytical solutions,and the secondary(scattered) fields are solved by the finite-element method.The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver,which greatly improves the computational efficiency.The inversion algorithm was based on damping leastsquares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix.Synthetic and field data were used to test the effectiveness of the proposed method.展开更多
High-frequency electromagnetic sounding is an electromagnetic exploration method using the natural high-frequency electromagnetic field as a field source. It has higher resolution and greater depth penetration than th...High-frequency electromagnetic sounding is an electromagnetic exploration method using the natural high-frequency electromagnetic field as a field source. It has higher resolution and greater depth penetration than the direct current method and is especially fit for geothermal energy exploration and low- and mid-level groundwater detection. We introduce a successful application of high-frequency electromagnetic sounding for evaluating geothermal water resources. The high frequency electromagnetic system (MT-USA with a frequency range from 10 KHz to 1 Hz) is first applied to sample field data from China. A remote reference station is used to assure sampled data quality. We then perform 2D inversion image processing with the electrical method data. The results basically indicate the spatial distribution of underground geothermal water and provide favorable clues to finding the sources of the subsurface geothermal water in this area.展开更多
A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forwar...A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.展开更多
文摘1研究背景已有研究表明,岩石破裂时电磁波超低频段会出现信号异常,且临近破裂时岩石附近磁场强度会出现短周期前兆变化(郝锦绮等,2003)。地磁垂直强度极化方法是目前地震磁扰动定量分析中物理含义明确、分析过程完善且获取异常信息能力较强的方法之一(姚休义等,2018)。该方法基于频谱分析,通过地磁场垂直分量Z和水平分量(H或G)的频谱振幅相比来定义。数值模拟结果证明,一次源来自地壳内频率1 Hz附近的磁信号垂直分量幅值大于水平分量幅值,其比值大于1(Molchanov et al,1995),故可通过该比值来突出岩石圈异常信号,同时抑制外源场的电磁信号。
文摘A finite element method with boundary element method (FEM-BEM) is presented for computing electromagnetic induction. The features of an edge element method including the volume and surface edge element method are investigated in depth. Surface basis functions of edge elements to an arbitrary shape of target are derived according to the geometrical property of basis functions and applied to discretize the surface integral equation for 3-D general targets. The proposed model is presented to compute resonant frequencies and surface current of underground unexplored ordnance (UXO), and then the electromagnetic responses of single target with different frequencies and positions of sensor are simulated and results are validated by experiments.
基金supported by the Doctoral Fund Project of the Ministry of Education(No.20130061110060 class tutors)the National Natural Science Foundation of China(No.41504083)National Basic Research Program of China(973Program)(No.2013CB429805)
文摘Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods.3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data.Thus,we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm.To eliminate the source singularities in the numerical simulations,we split the fields into primary and secondary fields.The primary fields are calculated using homogeneous or layered models with analytical solutions,and the secondary(scattered) fields are solved by the finite-element method.The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver,which greatly improves the computational efficiency.The inversion algorithm was based on damping leastsquares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix.Synthetic and field data were used to test the effectiveness of the proposed method.
文摘High-frequency electromagnetic sounding is an electromagnetic exploration method using the natural high-frequency electromagnetic field as a field source. It has higher resolution and greater depth penetration than the direct current method and is especially fit for geothermal energy exploration and low- and mid-level groundwater detection. We introduce a successful application of high-frequency electromagnetic sounding for evaluating geothermal water resources. The high frequency electromagnetic system (MT-USA with a frequency range from 10 KHz to 1 Hz) is first applied to sample field data from China. A remote reference station is used to assure sampled data quality. We then perform 2D inversion image processing with the electrical method data. The results basically indicate the spatial distribution of underground geothermal water and provide favorable clues to finding the sources of the subsurface geothermal water in this area.
基金Project(60672042) supported by the National Natural Science Foundation of China
文摘A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.